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Abstract

This research focuses on building foundational algorithms for scheduling agents that as-
sist people in managing their activities in environments where tempo and complex activity
interdependencies outstrip people’s cognitive capacity. We address the critical challenge of
reasoning over individuals’ interacting schedules to efficiently answer queries about how to
meet scheduling goals while respecting individual privacy and autonomy to the extent pos-
sible. We formally define the Multiagent Simple Temporal Problem for naturally capturing
and reasoning over the distributed but interconnected scheduling problems of multiple in-
dividuals. Our hypothesis is that combining bottom-up and top-down approaches will lead
to effective solution techniques. In our bottom-up phase, an agent externalizes constraints
that compactly summarize how its local subproblem affects other agents’ subproblems,
whereas in our top-down phase an agent proactively constructs and internalizes new lo-
cal constraints that decouple its subproblem from others’. We confirm this hypothesis
by devising distributed algorithms that calculate summaries of the joint solution space
for multiagent scheduling problems, without centralizing or otherwise redistributing the
problems. The distributed algorithms permit concurrent execution to achieve significant
speedup over the current art and also increase the level of privacy and independence in
individual agent reasoning. These algorithms are most advantageous for problems where
interactions between the agents are sparse compared to the complexity of agents’ individual
problems.

1. Introduction

Computational scheduling agents can assist people in managing and coordinating their
activities in environments where tempo, a limited view of the overall problem, and complex
activity interdependencies can outstrip people’s cognitive capacity. Often, the schedules
of multiple agents interact, which requires that an agent coordinate its schedule with the
schedules of other agents. However, each individual agent, or its user, may have strategic
interests (privacy, autonomy, etc.) that prevent simply centralizing or redistributing the
problem. In this setting, a scheduling agent is responsible for autonomously managing the
scheduling constraints as specified by its user. As a concrete example, consider Ann, who
faces the task of processing the implications of the complex constraints of her busy schedule.
A further challenge for Ann is that her schedule is interdependent with the schedules of her
colleagues, family, and friends with whom she interacts. At the same time, Ann would prefer
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the independence to make her own scheduling decisions and to keep a healthy separation
between her personal, professional, and social lives.

The Simple Temporal Problem (STP) formulation is capable of representing schedul-
ing problems where, if the order between pairs of activities matters, this order has been
predetermined. As such, the STP acts as the core scheduling problem representation for
many interesting planning problems (Laborie & Ghallab, 1995; Bresina, Jénsson, Morris,
& Rajan, 2005; Castillo, Fernandez-Olivares, & O. Garcia-Pérez, 2006; Smith, Gallagher,
Zimmerman, Barbulescu, & Rubinstein, 2007; Barbulescu, Rubinstein, Smith, & Zimmer-
man, 2010). One of the major practical advantages of the STP representation is that there
are many efficient algorithms that compute flexible spaces of alternative solutions (Dechter,
Meiri, & Pearl, 1991; Hunsberger, 2002; Xu & Choueiry, 2003; Planken, de Weerdt, &
van der Krogt, 2008; Planken, de Weerdt, & Witteveen, 2010a). This improves robustness
to the stochasticity of the real world and the unreliability of human users.

For instance, an STP can be used to schedule the morning agendas of Ann, her friend
Bill, and her doctor Chris by representing events such as the start time, ST, and end time,
ET, of each activity as variables, and capturing the minimum and maximum durations of
time between events as constraints. Ann will have a 60 minute recreational activity (R4+5)
with Bill before spending 90 to 120 minutes performing a physical therapy regimen ( TRA)
to help rehabilitate an injured knee (after receiving the prescription left by her doctor
Chris); Bill will spend 60 minutes in recreation (R4?) with Ann before spending 60 to 180
minutes at work (WB ); and finally, Chris will spend 90 to 120 minutes planning a physical
therapy regimen (TP®) for Ann and drop it off before giving a lecture (L¢) from 10:00 to
12:00. This example scheduling problem is displayed graphically in Figure 1a as a Simple
Temporal Network (STN)—a network of temporal constraints where each variable appears
as a vertex with its domain of possible clock times described by a self-loop, and constraints
appear as weighted edges. Figure 1b represents one example solution—an assignment of
specific times to each event that respects constraints.

Suppose that Ann, Bill, and Chris would each like to task a personal computational
scheduling agent with coordinating and managing the possible schedules that can accom-
plish his/her agenda while also protecting his/her interests. Unfortunately, current solution
algorithms for solving STPs require representing the entire problem as a single, centralized
STP, as shown in Figure 1, in order to calculate a (space of) solution schedule(s) for all
agents. The computation, communication, and privacy costs associated with centralization
may be unacceptable in multiagent planning and scheduling applications, such as military,
health care, or disaster relief, where users specify problems to agents in a distributed fash-
ion, and agents are expected to provide unilateral, time-critical, and coordinated scheduling
assistance, to the extent possible.

This motivates our first major contribution: a formal definition of the Multiagent Sim-
ple Temporal Problem (MaSTP). The MaSTP, along with its associated Multiagent Simple
Temporal Network (MaSTN) are distributed representations of scheduling problems and
their solutions. The MaSTN corresponding to our running example is displayed in Fig-
ure 2a. Like their centralized counterparts, MaSTPs can be used to help solve multiagent
planning problems and to monitor multiagent plan execution in a distributed manner. This
representation allows each person to independently specify a scheduling problem to his or
her own scheduling agent, and allows each agent, in turn, to independently maintain infor-
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(a) The example problem represented as a network of temporal constraints.
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(b) A fully assigned point solution to the example problem.

Figure 1: A typical, centralized STP representation of example problem.

mation about the interrelated activities of its user. Each scheduling agent, then, can use
this information to provide its user with exact times when queried about possible timings
and relationships between events, without unnecessarily revealing this information to other
agents.

The second major contribution of this paper is a distributed algorithm for computing
the complete joint solution space, as displayed in Figure 2b. This leads to advice that
is more robust to disturbances and more accommodating to new constraints than finding
single joint solutions like in Figure 1b. An advantage of this approach is that if a new
constraint arrives (e.g., Chris’ bus is late), the agents can easily recover by simply elim-
inating newly invalidated joint schedules from consideration. As agents make choices or
adjust to new constraints, our distributed algorithm can simply be reapplied to recompute
the resulting narrower space of remaining possible joint schedules, such that subsequent
choices are assured to also satisfy constraints. So long as agents wait for the ramifications
of choices/adjustments to propagate before making other choices, they eventually converge
to a schedule that works, rather than prematurely picking a brittle schedule that needs to
be replaced. However, this flexibility comes at the cost of ongoing communication, along
with coordinating the distributed decisions to ensure the implications of one agent’s deci-
sion propagates so that another agent’s decision will be compatible. For example, if Ann
decides to start recreating at 8:30, Bill’s agent must wait for this decision to propagate be-
fore advising Bill on his options of when he can recreate, otherwise he might inadvertently
choose a different time.
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(a) Our first contribution is the Multiagent Simple Temporal Network representation, which allows dis-
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Figure 2: A summary of our contributions as applied to the example problem.
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This motivates our third major contribution: a distributed algorithm for computing
a temporal decoupling. A temporal decoupling is composed of independent spaces of
locally consistent schedules that, when combined, form a space of consistent joint schedules
(Hunsberger, 2002). An example of a temporal decoupling is displayed in Figure 2c, where,
for example, Chris’ agent has agreed to prescribe the therapy regimen by 10:00 and Ann’s
agent has agreed to wait to begin performing it until after 10:00. Here, not only will the
agents’ advice be independent of other agents’, but the temporal decoupling also provides
agents with some resiliency to new constraints and enhances users’ flexibility and autonomy
in making their own scheduling decisions. Now when Chris’ bus is late by a minute, Chris’
agent can absorb this new constraint by independently updating its local solution space.
The advantage of this approach is that once agents establish a temporal decoupling, there
is no need for further communication unless a new constraint renders the chosen decoupling
inconsistent. It is only if and when a temporal decoupling does become inconsistent (e.g.,
Chris’ bus is more than a half hour late, causing her to violate her commitment to finish
the prescription by 10:00) that agents must calculate a new temporal decoupling (perhaps
establishing a new hand-off deadline of 10:15), and then once again independently react to
newly-arriving constraints, repeating the process as necessary.

The rest of our paper is structured to more fully describe each of these contributions.
Section 2 builds foundational background necessary for understanding our contributions.
Section 3 formally defines the MaSTP and explains important properties of the correspond-
ing MaSTN. Section 4 describes our distributed algorithm for computing complete MaSTP
solution spaces, analytically proving the algorithm’s correctness and runtime properties,
and empirically demonstrating the speedup it achieves over previous centralized algorithms.
Section 5 describes our distributed algorithm for decoupling MaSTP solution spaces, again
proving the algorithm’s correctness and runtime properties, and empirically comparing its
performance to previous art to demonstrate the trade-offs in completeness versus indepen-
dence in reasoning. We give an overview of related approaches in Section 6 and conclude
our discussion in Section 7.

2. Background

In this section, we provide definitions necessary for understanding our contributions, using
and extending terminology from previous literature.

2.1 Simple Temporal Problem

As defined by Dechter et al. (1991), the Simple Temporal Problem (STP), S = (X,C),
consists of a set of n timepoint variables, X, and a set of m temporal difference constraints,
C'. Each timepoint variable represents an event and has a continuous domain of values (e.g.,
clock times) that can be expressed as a constraint relative to a special zero timepoint
variable, z € X, which represents the start of time. Each temporal difference constraint c;;
is of the form x; — x; < b;j, where ; and x; are distinct timepoints, and b;; € RU {0} isa
real number bound on the difference between x; and z;. Often, as notational convenience,
two constraints, c¢;; and cj;, are represented as a single constraint using a bound interval of
the form T; —x; € [—bji, bl]]
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Table 1: Summary of the constraints for the running example problem.

A schedule is an assignment of specific time values to timepoint variables. An STP is
consistent if it has at least one solution, which is a schedule that respects all constraints.

In Table 1, we formalize the running example (introduced in Section 1) with specific
constraints. Each activity has two timepoint variables representing its start time (ST)
and end time (ET), respectively. In this example, all activities are to be scheduled in the
morning (8:00-12:00), and so are constrained (Availability column) to take place within 480
to 720 minutes of the zero timepoint z, which in this case represents midnight. Duration
constraints are specified with bounds over the difference between an activity’s end time
and start time. Ordering constraints dictate the order in which an agent’s activities must
take place with respect to each other. Finally, while a formal introduction of external
constraints is deferred until later (Section 3), the last column represents constraints that
span the subproblems of different agents. Figure 1b illustrates a schedule that represents a
solution to this particular problem.

2.2 Simple Temporal Network

To exploit extant graphical algorithms (e.g., shortest path algorithms) and efficiently rea-
son over the constraints of an STP, each STP is associated with a Simple Temporal Net-
work (STN), which can be represented by a weighted, directed graph, G = (V, E), called
a distance graph (Dechter & Pearl, 1987). The set of vertices V' contains a vertex v; for
each timepoint variable z; € X, and F is a set of directed edges, where, for each constraint
cij of the form x; — z; < b;;, a directed edge e;; from v; to v; is constructed with an initial
weight w;; = b;;. As a graphical short-hand, each edge from v; to v; is assumed to be
bi-directional, capturing both edge weights with a single interval label, [—wj;, w;;], where
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v —v; € [—wji,wij] and w;; or wy; is initialized to oo if there exists no corresponding
constraint ¢;; € C or ¢j; € C, respectively. An STP is consistent if and only if there exist
no negative cycles in the corresponding STN distance graph.

The reference edge, e.;, of a timepoint v; is the edge between v; and the zero time-
point z. As another short-hand, each reference edge e,; is represented graphically as a
self-loop on v;. This self-loop representation underscores how a reference edge e;, can be
thought of as a unary constraint that implicitly defines v;’s domain, where w,; and w;,
represent the earliest and latest times that can be assigned to v;, respectively. In this work,
we will assume that z is always included in V and that, during the construction of G, a
reference edge e,; is added from z to every other timepoint variable, v; € V_,.

The graphical STN representation of the example STP given in Table 1 is displayed in
Figure 2a. For example, the duration constraint T RgT -T RéT € [90,120] is represented
graphically with a directed edge from TR4; to TR4r with label [90,120]. Notice that
the label on the edge from RET to WgT has an infinite upper bound, since while Bill
must start work after he ends recreation, there is no corresponding constraint given for
how soon after he ends recreation this must occur. Finally, the constraint LgT -z €
[600, 600] is translated to a unary loop on L, with a label of [10:00,10:00], which represents
that Chris is constrained to start the lecture at exactly 600 minutes after midnight (or at
exactly 10:00 AM). Throughout this work, we use both STP and STN notation. The
distinction is that STP notation captures properties of the original problem, such as which
pair of variables are constrained with which bounds, whereas STN notation is a convenient,
graphical representation of STP problems that agents can algorithmically manipulate in
order to find solutions by, for example, capturing implied constraints as new or tightened
edges in the graph.

2.3 Useful Simple Temporal Network Properties

Temporal networks that are minimal and decomposable provide an efficient representation
of an STP’s solution space that can be useful to advice-giving scheduling agents.

2.3.1 MINIMALITY

A minimal edge e;; is one whose interval bounds, w;; and wj;, exvactly specify the set
of all values for the difference v; — v; € [—wj;, w;;] that are part of any solution (Dechter
et al., 1991). A temporal network is minimal if and only if all of its edges are minimal. A
minimal network is a representation of the solution space of an STP. For example, Figure 2b
is a minimal STN, whereas Figure 2a is not, since it would allow Ann to start recreation
at, say, 9:31 and Figure 2c also is not, since it does not allow Ann to start at 9:30. More
practically, a scheduling agent can use a minimal representation to exactly and efficiently
suggest scheduling possibilities to users without overlooking options or suggesting options
that will not work.

2.3.2 DECOMPOSABILITY

Decomposability facilitates the maintenance of minimality by capturing constraints that,
if satisfied, will lead to global solutions. A temporal network is decomposable if any
assignment of values to a subset of timepoint variables that is locally consistent (satisfies

101



BOERKOEL & DURFEE

all constraints involving only those variables) can be extended to a solution (Dechter et al.,
1991). An STN is typically made decomposable by explicitly adding otherwise implicit
constraints and/or tightening the weights of existing edges or variable domains so that only
provably consistent values remain. For example, Figure 1b is trivially decomposable, since
assigning a variable a single value within its minimal domain assures that it will be part
of a solution. Figure 2b, on the other hand, is not decomposable, since, for instance, the
assignment Ra; = 10:30 and TR, = 11:00, while self-consistent (because there are no
constraints that directly link these two variables), cannot be extended to a full solution.
A scheduling agent can use a decomposable temporal network to directly propagate any
newly-arriving constraint to any other area of the network in a single-step, backtrack-free
manner.

In sum, an STN that is both minimal and decomposable represents the entire set of
solutions by establishing the tightest bounds on timepoint variables such that (i) no solu-
tions are eliminated and (ii) any self-consistent assignment of specific times to a subset of
timepoint variables that respects these bounds can be extended to a solution in an efficient,
backtrack-free manner.

2.4 Simple Temporal Problem Consistency Algorithms

In this subsection, we highlight various existing algorithms that help establish the STN
solution properties introduced in the previous subsection.

2.4.1 FurLL PATH CONSISTENCY

Full Path Consistency (FPC) establishes minimality and decomposability of an STP
instance in O (n3) time (recall n = |V|) by applying an all-pairs-shortest-path algorithm,
such as Floyd-Warshall (1962), to its STN, resulting in a fully-connected distance graph
(Dechter et al., 1991). The Floyd-Warshall algorithm, presented as Algorithm 1, finds the
tightest possible path between every pair of timepoints, v; and v;, in a fully-connected
distance graph, where Vi, j, k, w;; < w; + wyj. This graph is then checked for consistency
by validating that there are no negative cycles, that is, Vi # j, ensuring that w;; +w;; > 0.
An example of the FPC version of Ann’s STP subproblem is presented in Figure 3a. Note
that an agent using an FPC representation can provide exact bounds over the values that
will lead to solutions for any pair of variables, regardless of whether or not a corresponding
constraint was present in the original STP formulation.

2.4.2 GRAPH TRIANGULATION

The next two forms of consistency require a triangulated (also called chordal) temporal
network. A triangulated graph is one whose largest non-bisected cycle is a triangle (of
length three). Conceptually, a graph is triangulated by the process of considering vertices
and their adjacent edges, one by one, adding edges between neighbors of the currently-
considered vertex if no edge previously existed, and then eliminating that vertex from
further consideration, until all vertices are eliminated (Golumbic, 1980). This basic graph
triangulation process is presented as Algorithm 2. The set of edges that are added during
this process are called fill edges and the order in which timepoints are eliminated from
consideration is referred to as an elimination order, o. Figure 3b shows the topology
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Algorithm 1: Floyd-Warshall

Input: A fully-connected distance graph G = (V| E)
Output: A FPC distance graph G or INCONSISTENT
1 fork=1...ndo

2 fori=1...ndo

3 for j=1...ndo

4 wij < min(w;j, wik + w;)

5

6

if Wij + Wi < 0 then
L return INCONSISTENT

7 return g

Algorithm 2: Triangulate

Input: A distance graph G = (V, E); and elimination order o = (v1,va, ..., Up—1,0p)
Output: A triangulated distance graph G

1 fork=1...ndo

2 forall i,j > k s.t. e, e;r € E do

3 L L E%EU{eij}

4 return G

of a triangulated version of Ann’s distance graph where timepoints are eliminated in order
0 = (TR, Ry, Rgr. TRGr).

The quantity w} is the induced graph width of the distance graph relative to o, and is
defined as the maximum, over all v, of the size of v;’s set of not-yet-eliminated neighbors
at the time of its elimination. The triangulate algorithm, then, operates in O (n . w;2) time.
Elimination orders are often chosen to attempt to find a minimal triangulation, that is to
attempt to minimize the total number of fill edges. While, generally speaking, finding the
minimum triangulation of a graph is an NP-complete problem, heuristics such as minimum
degree (selecting the vertex with fewest edges) and minimum fill (selecting the vertex
that adds fewest fill edges) are used to efficiently find elimination orders that approximate
the minimum triangulation (Kjaerulff, 1990).

2.4.3 DIRECTIONAL PATH CONSISTENCY

An alternative to FPC for checking STP consistency is to establish Directional Path
Consistency (DPC) on its temporal network. The DPC algorithm (Dechter et al., 1991),
presented as Algorithm 3, takes a triangulated graph and corresponding elimination order,
o, as input. It traverses each timepoint, v, in order o, tightening edges between each
pair of neighboring timepoints, v, vj, (where v; and v; are connected to vy via edges e;j
and ej;, respectively) that appear after vy, in order o, using the rule w;; < min(w;;, wix +
wy;). The time complexity of DPC is O (n . w§2), but instead of establishing minimality, it
establishes the property that a solution can be recovered from the DPC distance graph in
a backtrack-free manner if variables are assigned in reverse elimination order. An example
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Figure 3: Alternative forms of consistency applied to Ann’s STP.

Algorithm 3: Directional Path Consistency (DPC)

Input: A triangulated temporal network G = (V, E') and corresponding elimination
order o = (v1,v2,...,Up_1,Up)

Output: A DPC distance graph G or INCONSISTENT

1 fork=1...ndo

2 forall i > k s.t. e;;, € E do

3 forall j > i s.t. ej; € £ do

4 wyj — min(w;j, Wik + W)

5

6

7

Wi — min(wji, Wik + wkl)
if w;; +wj; <0 then
L return INCONSISTENT

return ¢

0]

of a DPC version of Ann’s problem, using elimination order o = (T RéT, RgT, RéT, TRéT),
is presented in Figure 3b. Basically, establishing DPC is sufficient for establishing whether
consistent schedules exist or not, but limits a scheduling agent to giving useful advice over
only the last variable to be eliminated.

In Section 4.1, we discuss how we combine the reasoning of the DPC and triangulate
algorithms so that their execution can be distributed. Combining this reasoning yields
an example of a bucket-elimination algorithm. Bucket-elimination algorithms (Dechter,
1999) are a general class of algorithms for calculating knowledge compilations, solution
space representations from which solutions can be extracted in a backtrack-free, linear-time
manner. The adaptive consistency algorithm (Dechter & Pearl, 1987; Dechter, 2003)
calculates a knowledge compilation for general constraint satisfaction problems (Dechter,
1999). Adaptive consistency eliminates variables one by one, and for each variable that it
eliminates, reasons over the “bucket” of constraints the variable is involved with to deduce
new constraints over the remaining non-eliminated variables. Any solution to the remain-
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Algorithm 4: Planken’s Partial Path Consistency (P3C)
Input: A triangulated temporal network G = (V, E) and an elimination order
0= (V1,V2,...,0n_1,0p)
Output: A PPC distance graph G or INCONSISTENT
G < DPC(G,o0)
return INCONSISTENT if DPC does
for k=n...1do
forall i,j > k s.t. e, ejr € B do
L Wik <= min(wgg, wi; + wjk)
Wy <= min(wy;, Wi + wij)

S R W N =

return ¢

~

ing subproblem can be extended to a solution to the original problem, since the solution
accounts for all constraints entailed by the eliminated variable. DPC is an important step
in establishing Partial Path Consistency, as we discuss next.

2.4.4 PARTIAL PATH CONSISTENCY

Bliek and Sam-Haroud (1999) demonstrate that Partial Path Consistency (PPC) is
sufficient for establishing minimality on an STP instance by calculating the tightest possible
path for only the subset of edges that exist within a triangulated distance graph. An
example is Xu and Choueiry’s algorithm ASTP (Xu & Choueiry, 2003), which processes
and updates a queue of all potentially inconsistent triangles (A) from the triangulated
graph. Alternatively, in their algorithm P3C, Planken et al. (2008) sweep through these
triangles in a systematic order, which gives a guaranteed upper bound on its runtime,
while no such bound is known for ASTP. The P3C algorithm, included as Algorithm 4
executes the DPC algorithm as a first phase and then executes a reverse traversal of the
DPC algorithm as a second phase, where edge weights are updated in reverse elimination
order. Thus P3C achieves the same complexity, O (n . wzz), as the DPC algorithm. By
exploiting sparse network topology, PPC-based algorithms may establish minimality much
faster than FPC algorithms in practice (O (n-w}?) € O (n®)) (Xu & Choueiry, 2003;
Planken et al., 2008). The PPC representation of Ann’s subproblem using elimination
order o = (T R4, Rar, R4, TR4y) is displayed in Figure 3c.

PPC only approximates decomposability since only assignments to fully-connected sub-
sets of variables (those that belong to the same clique in the triangulated network) are
guaranteed to be extensible to a full solution. However solutions can still be recovered in a
backtrack-free manner by either requiring constraint propagation between each subsequent
variable assignment or by assigning variables in any reverse simplicial elimination or-
der—any elimination order of variables that yields the same triangulated network (that
is, introduces no new fill edges) (Planken et al., 2008). An agent using a PPC represen-
tation can offer advice over any pair of variables that share an edge in the triangulated
graph—those that were originally related via a constraint in the original formulation and
those connected by fill edges. While, unlike FPC temporal networks, an agent using a
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PPC network cannot answer queries regarding arbitrary pairs of variables (i.e., those that
do not share an edge), the sparser PPC structure will have important benefits for agents’
independent and private reasoning, as discussed in Section 3.1.2.

2.5 The Temporal Decoupling Problem

Hunsberger (2002) formally defined the concept of a temporal decoupling for STPs. A
partitioning of an STP S’s variables into two sets, V4 and VB, leads naturally to the
definition of two sub-STPs, S4 = <VA,CA> and SP = <VB,C’B>, where C4 and C® are
the constraints defined exclusively over the variables in V4 and V2, respectively. Then S4
and SP form a temporal decoupling of S if:

e 54 and S are consistent STPs; and

e Merging any locally consistent solutions to the problems in S4 and S® yields a solution
to S.

Notice that a temporal decoupling exists if and only if the original STP is consistent.
Alternatively, when S# and SZ form a temporal decoupling of S, S and S are said to be
temporally independent. The Temporal Decoupling Problem (TDP), then, is defined as
finding two sets of decoupling constraints, Cﬁ and C’E , such that if Cﬁ and C’E are combined
with S and S? to form Sg = <VA, cAu C’ﬁ> and Sg = <VB, cBu C’AB> respectively, then
Sﬁ and Sf form a temporal decoupling of STP S. A minimal decoupling is one where,
if the bound of any decoupling constraint in either Cﬁ or Cg is relaxed (increasing the
bound so that the constraint is more inclusive) or removed, then S4 and S” no longer
form a decoupling. The original TDP algorithm (Hunsberger, 2002) executes centrally
and iterates between proposing new constraints to add to Cﬁ and CAB and propagating
these constraints to reestablish FPC on the corresponding global distance graph so that
subsequently proposed decoupling constraints are guaranteed to be consistent. An iteration
occurs for each constraint that spans between S and SZ until all such constraints have
been rendered moot due to new decoupling constraints.

A temporal decoupling trades a complete solution space with possibly messy interde-
pendencies for a partial solution space with nice independence properties. Independent
reasoning, which can be critical in applications that must provide time-critical, unilateral
scheduling advice in environments where communication is costly or uncertain, comes at
the cost of eliminating valid joint solutions. In Section 4.3, we will present various flexibility
metrics that quantify the portion of the solution space that is retained by a given temporal
decoupling, and use these to quantify this trade-off.

3. The Multiagent Simple Temporal Problem

The problem that this paper addresses is that of developing a compact, distributed rep-
resentation of, and distributed algorithms for finding (a temporal decoupling of) the joint
solution space of, multiagent scheduling problems. This section formally defines the dis-
tributed representation in the form of the Multiagent Simple Temporal Problem, extends
the definitions of minimality and decomposability to this representation, and characterizes
independence and privacy within this representation. Sections 4 and 5 will then describe
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distributed algorithms that find either complete or temporally decoupled solution spaces
for providing users with flexible and sound scheduling alternatives. These algorithms avoid
unnecessarily centralizing or redistributing agents’ subproblems and also achieve significant
speedup over current state-of-the-art approaches.

3.1 Multiagent Simple Temporal Problem Formulation

The Multiagent Simple Temporal Problem (MaSTP) is composed of a local STP
subproblems, one for each of the a agents, and a set of constraints Cx that establish
relationships between the local subproblems of different agents (Boerkoel & Durfee, 2010,
2011; Boerkoel, 2012). An agent i’s local STP subproblem is defined as S} = <VLi, Ci>1,
where:

° VI’; is defined as agent i’s set of local variables, which is composed of all timepoints
assignable by agent i along with a variable representing agent i’s reference to z; and

° Ci is defined as agent i’s set of intra-agent or local constraints, where a local
constraint, ¢;; € C}, is defined as a bound b;; on the difference between two local
variables, v; — v; < byj, where v, v; € V7.

In Figure 2a, the variables and constraints entirely within the boxes labeled Chris, Ann, and
Bill represent each person’s respective local STP subproblem from the running example.
Notice, the sets V; partition the set of all (non-reference) timepoint variables, V_...

Cx is the set of inter-agent or external constraints, where an external constraint
is defined as a bound on the difference between two variables that are local to different
agents, v; € VLi and v; € V{, where ¢ # j. However, each agent knows only the subset of
external constraints that involve its local timepoints and, as a by-product of these external
constraints, is also aware of a subset of non-local variables, where:

o C% is agent i’s set of external constraints, each of which involves exactly one of
agent i’s local timepoint variables (since all constraints are inherently binary); and

° V}l( is agent ¢’s set of external timepoint variables, which are local to some other
agent j # ¢, but are known to agent ¢ due to an external constraint in C’g(.

The sets of all external constraints is Cx = |J; C% and set of all external variables is
Vx =, V)Z'(. Together, an agent ¢’s set of known timepoints is Vi U V)"( and its set of known
constraints is C’E U Cg(. Note that this assumes that each constraint is known by each agent
that has at least one variable involved in the constraint. In Figure 2a, external constraints
and variables are denoted with dashed edges.

More formally, then, an MaSTP, M, is defined as the STP M = (Vj, Cprq) where
Vm = UZVLZ and Cp = Cyx UUZ-CE.

1. Throughout this paper, we will use superscripts to index agents and subscripts to index variables and
constraints/edges.
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Figure 4: High-level overview of the MaSTP structure.

3.1.1 MINIMALITY AND DECOMPOSABILITY

Up until this point, we have discussed the MaSTP as a problem formulation. How-
ever, we can also discuss properties of the corresponding Multiagent Simple Temporal Net-
work (MaSTN). An MaSTP is converted to an equivalent MaSTN in the same way that an
STP is converted into an STN, where the definition of agent i’s local and external edges,
E% and EY%, follows analogously from the definition of C% and C%, respectively. Like in
the STN, the MaSTN can be algorithmically manipulated to represent useful information.
Here, we will discuss how STN properties such as minimality and decomposability translate
to the MaSTN.

Because an MaSTN is an STN (albeit a decentralized one), properties such as minimality
and decomposability extend unhindered to multiagent temporal networks. Thus, a minimal
MaSTN is one where all the edges are minimal. Likewise, an MaSTN is decomposable if
any self-consistent assignment of values to a subset of variables can be extended to a full
joint solution.

Calculating an MaSTN that is both minimal and decomposable requires computing a
fully-connected network, which, in a multiagent setting, clobbers all independence between
agents’ subproblems: each of an agent’s timepoints will now be connected to every other
timepoint of every other agent. Full connectivity obliterates privacy (since now Vv € V,f, v E
V)J;Vj # 1) and requires that every scheduling decision be coordinated among all agents. For
this reason, our work focuses on instead establishing partial path consistency to approximate
decomposability while retaining the loosely-coupled structure that may exist in an MaSTN.

3.1.2 AN ALGORITHM-CENTRIC MASTP PARTITIONING

The MaSTP formalization just presented naturally captures MaSTPs using an agent-centric
perspective. However, algorithmically, it is often easier to discuss an MaSTP in terms of
which parts of the problem an agent can solve independently, and which parts require shared
effort to solve. Thus, here we introduce some additional terminology that helps improve
the precision and comprehension of both our algorithmic descriptions and our analytical
arguments.
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(a) Each agent has external, inter- (b) Local vs. External. (c) Private vs. Shared.
face, and private timepoints.

Figure 5: Alternative partitionings of an agent’s STP.

The natural distribution of the MaSTP representation affords a partitioning of the
MaSTP into independent (private) and interdependent (shared) components. We start by
defining the shared STP, Sg = (Vgs, Cs), which is composed of:

o Vg = Vx U {z}—the set of shared variables is comprised of all variables that are
involved in at least one external constraint; and

o Cs = {c;j | vi,vj € Vg}—the set of shared constraints is defined as the constraints
between pairs of shared variables, and includes the entire set of external constraints
Cx, but could also include otherwise local constraints that exist between two shared
variables belonging to a single agent.

Notice that, as illustrated in Figure 4, the shared STP overlaps with an agent’s local
subproblem, and thus divides each agent i’s known timepoints, V*, into three distinct sets:

° V)i(—agent i’s set of external variables, defined as before;

e V} =V} NVs—agent i’s set of interface variables, which is defined as agent 4’s set
of local variables that are involved in one or more external constraints; and

e Vi =V} \ Vs—agent i’s set of private variables, which is defined as agent i’s local
variables that are not involved in any external constraints.

These three sets of variables are depicted graphically in Figure 5a. Figure 5 also high-
lights the two alternate partitionings of an MaSTP into agent-centric local versus external
components (Figure 5b) and algorithm-centric independent (private) versus interdependent
(shared) components (Figure 5¢). More formally, this allows us to define agent i’s private
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subproblem, S}; = <VI§, C};>, where agent i’s set of private constraints, C}; = Ci \ Cg,
is the subset of agent i’s local constraints that include at least one of its private variables.

The partitioning depicted in Figure 5c¢ is useful algorithmically because it establishes
which parts of an agent’s subnetwork are independent of other agents (private), and which
parts are inherently interdependent (shared). Notice that agent i’s local constraints are
included in its private subproblem as long as they include a private variable, even if they
also involve a shared variable. This is because agent ¢ is able to propagate changes to that
constraint, and any other private constraint, without directly affecting a shared timepoint
or constraint. Private edges connected to a shared timepoint appear to hang in Figure 5¢
because the shared timepoint is actually part of the shared subproblem.

3.1.3 INDEPENDENCE

Algorithms that use the distributed MaSTN representation to reason over scheduling prob-
lems that span multiple agents have strategic (e.g., privacy) and computational (e.g., con-
currency) advantages. The extent to which these advantages can be realized largely depends
on the level of independent reasoning that an agent is able to perform over its local prob-
lem. We define two timepoints as independent if there is no path that connects them
in the MaSTN, and dependent otherwise. Notice that all dependencies between agents
inherently flow through the set of shared variables, Vg. The implication is that each agent
i can independently (and thus concurrently, asynchronously, privately, autonomously, etc.)
reason over its private subproblem S}; independently of S}V # i.

Theorem 1. The only dependencies between agent i’s local subproblem, St, and another
agent j’s (j # i) local subproblem S, exist exclusively through the shared STP, Sg.

Proof. By contradiction, assume there exist variables v; € V]i and v; € Vg such that v; and
v; are not independent given Sg. This implies that there exists a path in the constraint
network between v; and v; that involves some pair of private variables v/ € V} and v € Vf;
that are connected via a constraint. However, this is a contradiction, since v, and v} would,
by definition, belong to Vg, and thus Ss. Therefore, every pair of variables v; € V} and
vj € V}]; are independent given Sg. O

3.1.4 PRIVACY

In our work, we assume that agents are cooperative. However, at the same time, a user
may still wish to avoid the gratuitous revelation of details about his or her schedule to the
agents of other people, to the extent possible. We next look the privacy that is preserved as a
byproduct of both the distributed problem representation and level of independent reasoning
as established in Theorem 1. Obviously, any coordination between agents’ activities has
some inherent privacy costs. However, we show that these costs are limited to the shared
timepoints and edges between them.

Notice that in Figure 2a the only variable of Ann’s that Bill’s agent starts out knowing is
her recreational start time variable RéT, due to Bill’s shared constraint with Ann. However,
while Ann’s agent can establish PPC using a variety of different elimination orderings, Ann’s
agent alone cannot establish PPC over its timepoints without adding new external edges.
This is because Ann’s problem contains two different externally constrained timepoints that
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share a local constraint path, regardless of which elimination order is used. So, for example
if Ann’s agent were to eliminate both of its private timepoints (7 RéT and R%;) and then
eliminate RéT, the triangulation process would construct a new external edge between
shared timepoints TRy and RE, as shown in Figure 2b. This effectively adds TRy to
Bill’s agent’s set of external timepoints. Because TR‘;T was already shared with Chris’
agent, the fill edge between it and R?T is a shared edge, and the triangulation process
allows Bill’s agent to become aware of these shared components of Ann’s problem. The
question becomes: can Bill’s agent continue this process to draw inferences about any of
Ann’s private timepoints and edges? Theorem 2 shows that, without an exogenous source of
information, an agent will not be able to infer the existence of, the number of, or bounds on
another agent’s private timepoints, even if they implicitly influence the agent’s subproblem
through shared constraint paths.

Theorem 2. No agent can infer the existence or bounds of another agent’s private edges,
or subsequently the eristence of private timepoints, solely from the shared STN.

Proof. First, we prove that the existence or bounds of a private edge cannot be inferred
from the shared STN. Assume agent ¢ has a private edge, e;;, € E};. By definition, at least
one of v; and vy is private; without loss of generality, assume v; € Vlg. For every pair of
edges e;; and e, that are capable of entailing (the bounds of) e;, regardless of whether v;
is shared or private, v; € V}i implies e;; € E}; is private. Hence, any pair of edges capable
of implying a private edge must also contain at least one private edge. Therefore, a private
edge cannot be inferred from shared edges alone.

Thus, since an agent cannot extend its view of the shared STN to include another agent’s
private edges, it cannot infer another agent’s private timepoints. ]

Theorem 2 implies that Sg (the variables and constraints of which are represented with
dashed lines in Figure 2b) represents the maximum portion of the MaSTP that agents can
infer without an exogenous (or hypothesized) source of information, even if they collude
to reveal the entire shared subnetwork. Hence, given the distribution of an MaSTP M, if
agent i executes a multiagent algorithm that does not reveal any of its private timepoints or
constraints, it can be guaranteed that any agent j # ¢ will not be able to infer any private
timepoint in VIE or private constraint in C}D by also executing the multiagent algorithm—at
least not without requiring conjecture or ulterior (methods of inferring) information on the
part of agent j. More generally, it is not necessary or inevitable that any one agent knows
or infers the entire shared STP Sg.

3.2 Multiagent Temporal Decoupling Problem

We next adapt the original definition of temporal decoupling (Hunsberger, 2002) as de-
scribed in Section 2.5 to apply to the MaSTP. The set of agents’ local STP subproblems
{8},82,...,87} form a temporal decoupling of an MaSTP M if:

o {81,8%,...,87} are consistent STPs; and

e Merging any combination of locally-consistent solutions to each of the problems in
{81,82,...,87} yields a solution to M.
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Figure 6: The temporal decoupling problem calculates new local constraints that render
constraints between agents superfluous.

Alternatively, when {S},S8%,...,87} form a temporal decoupling of M, they are said to
be temporally independent. As illustrated in Figure 6, the objective of Multiagent
Temporal Decoupling Problem (MaTDP) is to find a set of constraints Cy for each
agent 7 such that if SE+A = <V£,C}J U CiA>, then {S]{+A,S]%+A, .., Spya} is a temporal
decoupling of MaSTP M. Note that solving the MaTDP does not mean that the agents’
subproblems have somehow become inherently independent from each other (with respect
to the original MaSTP), but rather that the new decoupling constraints provide agents a
way to perform sound reasoning completely independently of each other.

Notice that new constraints, CiA, depicted with dotted lines in the right-hand side of
Figure 6, allow the safe removal of the now superfluous external constraints involving agent
1’s local variables, and so the external constraints are also removed in the figure. Finally, no-
tice that local variables and edges that were previously part of the shared problem (marked
in the right-hand side of Figure 6 with double edges) can now be treated algorithmically
as private. Figure 1b and Figure 2c both represent temporal decouplings of the example,
where new or tighter unary decoupling constraints, in essence, replace all external edges
(shown faded). A minimal decoupling is one where, if the bound of any decoupling con-
straint ¢ € C for some agent i is relaxed (or removed), then {87, A, S A,---sSE A} 18
no longer a decoupling. Figure 2c¢ is an example of a minimal decoupling whereas the de
facto decoupling formed by a full assignment (such as the one in Figure 1b) is not minimal.

4. Distributed Algorithms for Calculating Partial Path Consistency

In this section, we introduce our Distributed Partial Path Consistency (DAPPC) algorithm
for establishing PPC on an MaSTN. As illustrated in Figure 7, our algorithm works by
solving a+1 subproblems: a private agent subproblems and the one shared STP. Like the
original P3C algorithm (Algorithm 4 on page 105), each of these subproblems is solved
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Figure 7: Our distributed PPC algorithms operate in four distinct phases.
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in two phases: a forward sweep eliminates timepoints to compute implied constraints and
establish DPC and a second, reverse sweep reinstates nodes and updates their incident edges
to establish full minimality and PPC. In order to maximize concurrency and independence in
our distributed version of this algorithm, we carefully partition execution into four phases.
Agents work together to perform the forward (Phase 2, Figure 7) and reverse (Phase 3,
Figure 7) sweeps of the P3C algorithm respectively on the shared STP, but each agent
independently performs the forward (Phase 1, Figure 7) and reverse (Phase 4, Figure 7)
sweeps of the P3C algorithm on its private subproblem.

In Section 4.1, we introduce our ADPC and APPC algorithms, which both serve as
subroutines of the DAPPC algorithm to establish DPC and PPC on each agent’s private
subproblem Our ADPC algorithm tweaks the original DPC algorithm so that each agent
can independently triangulate and establish DPC over the private portion of its subprob-
lem (Phase 1). Then, later in Phase 4, each agent executes APPC to reinstate its private
timepoints and complete the process of establishing PPC on its private subproblem. Next,
in Section 4.2.1, we describe the DADPC algorithm that carefully distributes the execution
of the ADPC algorithm so that, after separately establishing DPC on their private STNs,
agents work together to triangulate and update the remaining shared portion of the MaSTN
in a globally consistent manner, thus establishing DPC on the MaSTN as a whole (Phases
1 and 2). Finally, we present our overarching DAPPC algorithm in Section 4.2.2. Each
agent executes DAPPC separately. DAPPC first invokes DADPC to establish DPC on
the MaSTN (Phases 1 and 2), then executes a distributed version of APPC’s reverse sweep
for agents to cooperatively establish PPC on the shared portion of their MaSTN (Phase
3), and finally invokes APPC to finish PPC establishment on the agent’s separate private
subproblem (Phase 4). We conclude this section by proving that, despite the distribution
of their execution, these algorithms maintain their correctness (Section 4.2.3), and by em-
pirically demonstrating that, as a result of concurrent execution, our DAPPC algorithm
achieves high levels of speedup over its centralized counterparts (Section 4.3).

4.1 Centralized Partial Path Consistency Revisited

The DPC (Algorithm 3 on page 104) and P3C (Algorithm 4 on page 105) algorithms both
take a variable-elimination ordering and already triangulated STN as input. However, if
our aim is to decentralize algorithm execution, requiring an already triangulated network
and complete variable elimination order punts on providing a distributed solution to a
critical algorithmic requirement at best, or requires a centralized representation of the entire
network at worst, thus invalidating many of the motivations for distribution in the first
place. Hence, the point of this section is to demonstrate that both the graph triangulation
process and the elimination order construction process can be incorporated into the DPC
algorithm, whose execution we later distribute, with no added computational overhead.
Observe that both the triangulation (Algorithm 2 on page 103) and DPC algorithms end
up traversing graphs in exactly the same order, and so their processing can be combined.
Our ADPC algorithm (Algorithm 5) is the result of modifying the DPC algorithm based on
two insights: (i) that ADPC can construct the variable elimination order during execution
by applying the SELECTNEXTTIMEPOINT procedure (line 3), which heuristically chooses
the next timepoint, vy, to eliminate; and (ii) as ADPC considers the implications of each
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Algorithm 5: Triangulating Directional Path Consistency (ADPC)

Input: An STN G = (V, E)

Output: A triangulated, DPC STN G and corresponding elimination order
0= (v1,v2,...,Vp—1,VUp), Or INCONSISTENT

0 ()

while |V| > 0 do

v <~ SELECTNEXTTIMEPOINT((V, E) , 0)

VeV {u}

0.APPEND (V)

forall v;,v; € V s.t. e, ejr € E do

E+ EU {eij}

Wij <— min(wij, Wik + wkj)

wj; — min(wj;, Wik + W)

10 if wi; +wj; <0 then

11 | return INCONSISTENT

© 0 N o ok~ W N

12 return G, o

pair of temporal difference constraints involving the removed timepoint variable, it neces-
sarily considers the exact fill edges that the triangulation process would have added. ADPC
requires only the original distance graph representation of the STN, G as input. Line 7 adds,
if necessary, any newly-created fill edges between v;’s non-eliminated neighbors and then
proceeds to propagate the implications of the eliminated timepoint’s constraints forward
in lines 8-9. Like the DPC algorithm, ADPC halts as soon as it detects an inconsistency
(line 11). Incorporating the triangulation process into the ADPC algorithm reduces the
problem of distributing both the DPC and graph triangulation algorithms to that of dis-
tributing the execution of the ADPC algorithm alone. The ADPC algorithm is an example
of a bucket-elimination algorithm and has the property that the elimination process could
stop at any point, and any solution to the remaining subproblem is guaranteed to be exten-
sible to a full solution involving the eliminated timepoints. Thus, a solution can be derived
from a DPC network by assigning timepoints in reverse elimination order.

As an example, consider Ann’s agent, which we refer to as agent A, executing the ADPC
algorithm on Ann’s subproblem (see Figure 8a). The algorithm starts by using the minimum
fill heuristic to select variable TR for elimination and adds TR to its elimination order.
Next agent A loops through each pair of TRgT’s neighbors. In this case there is only one
such pair of neighboring edges: the unary edge, which is represented algorithmically as an
edge shared with the reference timepoint z, and the edge with TRéT. Together, these edges
imply a tighter unary constraint on TR?T, lowering the upper bound to 10:30 so that it
is guaranteed to occur at least 90 minutes before the eliminated T R‘ST. By eliminating
values from TRng’S domain that are inconsistent with TR}%T, agent A is guaranteed that if
a solution to the remaining (non-eliminated) subproblem exists, this solution is extensible
to include TRy

Next agent A selects RéT for elimination. In this case notice that RéT is involved in a
path from RéT to TR?T. So in addition to updating the domains of neighboring timepoints,
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(a) The forward sweep of APPC (ADPC) works by selecting each timepoint, and before eliminating it from
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(b) The reverse sweep of APPC works by reinstating each timepoint in reverse order, tightening its incident
edges with respect to the newly-updated, explicit constraints of its neighbors.

Figure 8: Agent A executing the two-part APPC on Ann’s private subproblem. This can
be viewed as the first (a) and last (b) phases of our overall DAPPC algorithm.

agent A must also capture the path from RéT to TRg‘T involving RgT. To guarantee that
the integrity of this path is retained, agent A adds a fill edge from RéT to TR?T, with a
lower bound of 60 and infinite upper bound (as implied by the path). This addition of fill
edges is the reason that the output of ADPC is a triangulated network. Note that typically
the minimum fill heuristic would select variables that add no fill edges before selecting ones
that do, but as we explain in Section 4.2.1, to improve concurrency, we restrict an agent to
eliminating its private timepoints prior to its shared timepoints.

When ADPC completes, any remaining, non-eliminated timepoints are involved in ex-
ternal constraints, and will be addressed by the distributed algorithms described shortly
in Section 4.2. Before turning to the distributed algorithms, however, we first describe
APPC, which each agent will apply to complete the computation of PPC on its private
subproblem in Phase 4. The APPC algorithm, included as Algorithm 6, nearly identically
follows the original P3C algorithm, only replacing DPC with the ADPC algorithm, drop-
ping the triangulation and elimination order requirements, and adding line 5 to explicitly
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Algorithm 6: Triangulating Partial Path Consistency (APPC)

Input: An STN G = (V, E); or DPC STN G w/ corresponding elimination order o
Output: A triangulated, PPC STN G or INCONSISTENT
1 if o is not provided then

2 G,0<+ ADPC(G)

3 return INCONSISTENT if ADPC does
4 fork=n...1do

5 V+«VUu

6 forall i,j > k s.t. e, ejr € B do

7 Wik <= min(wgg, wi; + wjk)

8 Wiy <= min(wy;, Wi + wij)

9 return g

reinstate each eliminated timepoint during the reverse sweep. The APPC algorithm com-
plements the ADPC algorithm by reinstating eliminated timepoints in reverse elimination
order. However as a timepoint is reinstated, its incident edges are updated with respect to
its previously reinstated neighbors, whose now explicit edges are inductively guaranteed to
be minimal as a property of the ADPC algorithm.

Figure 8b shows Ann’s subproblem just as agent A has returned from establishing PPC
over its shared timepoints, as soon described in Section 4.2. To convey the reverse rein-
statement order, note that Figure 8b works from right to left. Agent A starts by selecting
R}%T, the last private timepoint that it eliminated, for reinstatement. Then agent A loops
through each pair of R’éT’s neighbors, this time updating each incident edge with respect
to the now explicit and minimal third edge (in Figure 8b, there are three incident edges:
the domain of each of RéT’s neighbors and the edge between them). This results in an
updated domain of [9:00,10:30] for RéT, which occurs exactly 60 minutes after RéT, and a
new upper bound on the edge shared with TR?T. TR’ST is similarly reinstated, completing
the execution of our algorithm. Next, we prove that our APPC algorithm is correct and
that it runs in O (n (ag + w32)) time in Theorems 3 and 4 respectively.

Theorem 3. The ADPC and APPC algorithms establish DPC and PPC on an STN,
respectively.

Proof. The difference between Algorithm 6 and the P3C algorithm (Algorithm 4, page 105),
is the call to ADPC to obtain an elimination order, to triangulate, and to establish DPC.
The while loop of Algorithm 5 (line 2), along with lines 3-5, establish a total order, o, of all
vertices. Given o, lines 2, 6, and 7 exactly execute the triangulate algorithm (Algorithm 2,
page 103), which triangulates the graph so that lines 2, 6, 8, and 11 can exactly execute the
DPC algorithm (Algorithm 3, page 104). Thus the ADPC algorithm establishes DPC. The
remainder of the algorithm exactly follows the P3C algorithm, which Planken et al. (2008)
prove correctly establishes PPC. O
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Theorem 4. APPC(C executes in O (n (ag + w;z)) time, where ag s the complezity of the
variable selection heuristic (as applied to G) and W} is the graph width induced by o.

Proof. Besides the call to ADPC in the first line, Algorithm 6 exactly executes P3C on the
STN @G, which requires O (n . w;Z) time, as proven by Planken et al. (2008). Meanwhile,
the outer while loop of Algorithm 5 (line 2) is executed n times. For each iteration, all
operations require constant time other than the SELECTNEXTTIMEPOINT heuristic (line 3),
whose cost ag is a function of the size and complexity of G, and the inner for loop (line 6),
which has complexity w2. O

Note that because an elimination order is not provided as input, the costs of the vari-
able selection heuristic become embedded into the algorithm. These costs can range from
constant time (if selection is arbitrary) to NP-hard (if selection is optimal), but are typi-
cally polynomial in the number of vertices n and number of constraints m (Kjaerulff, 1990).
Thus, the algorithm internalizes a computational cost that is typically assumed to be part
of the preprocessing. So that our analyses are consistent with convention, and to better
capture only the computation costs associated with directly manipulating the underlying
temporal network, we will not include these ag costs in our remaining analyses.

4.2 The Distributed Partial Path Consistency Algorithm

Agents execute the ADPC and APPC algorithms separately on their private STNs (Phases
1 and 4, Figure 7), but correctly solving the shared STN (Phases 2 and 3, Figure 7) requires
cooperation. To accomplish this, we introduce our distributed partial path consistency
algorithm DAPPC. Our presentation parallels that of the previous section, where we begin
with the forward-sweeping DADPC algorithm for triangulating and establishing DPC on
the MaSTN instance in Section 4.2.1, and follow this with the reverse sweep in the DAPPC
algorithm in Section 4.2.2.

4.2.1 THE DADPC ALGORITHM

Consider once again the example in Figure 8a. Agent A can successfully and independently
execute ADPC on its two private timepoints T RgT and RéT. At this point, consider what
would happen if agent A proceeded with eliminating its other timepoints RéT and TR?T.
Each remaining timepoint is connected to portions of the MaSTN that belong to other
agents, and so agent A must now consider how its actions will impact other agents and wvice
versa. For example, suppose agent A is considering eliminating Rg‘T, but unbeknownst to
agent A, Bill’s agent (agent B) has already eliminated RgT. In this case, agent A would
eliminate Rg‘T assuming that an edge with RET still exists, when in reality, it does not.
As a result, the computation of agent A could result in superfluous reasoning or reasoning
over stale information, which ultimately could jeopardize the integrity of the output of
the algorithm as a whole. Next, we discuss how our algorithm avoids these problematic
situations.

Our distributed algorithm DADPC (Algorithm 7) is a novel, distributed implementation
of a bucket-elimination algorithm for establishing DPC in multiagent temporal networks
(Phases 1 and 2, Figure 7). Each agent starts by completing Phase 1 by applying ADPC on
its private STP (lines 1-2), as presented in the previous section and illustrated in Figure 8a.
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Algorithm 7: Distributed Directional Path Consistency (DADPC)

Input: Agent i’s portion of a distance graph G¢ = <Vi, E2>
Output: Agent i’s portion of a triangulated, DPC distance graph G¢ and

corresponding elimination orders ofp = (vl, e Ui, ) and og = (v1,...vpg), OF
INCONSISTENT

G', 0% < ADPC((V}, EY))

return INCONSISTENT if ADPC does

05 <— () '

while |V}| > 0 do

REQUESTLOCK(0g)

v < SELECTNEXTTIMEPOINT((V}, E}, 0g)

05.APPEND(vg,)

RELEASELOCK(0g)

Vi < Vi {ug}

forall v; € V)i( Nog s.t. e;; € E and updates for v; have not yet been received do

| E'«+ E'U BLOCKRECEIVEUPDATEDEDGES(Agent(v;))

© 0w N O oA W N

-
= o

12 forall v;,v; € V& s.t. e, e, € E do

13 E+ EU {eij}

14 Wij <— min(wij, Wik + wkj)

15 Wjj min(wji, Wik + wki)

16 if w;; +wj; <0 then

17 BROADCAST(INCONSISTENT)

18 return INCONSISTENT

19 else

20 SENDUPDATEDEDGE(e;j, Agent(v;))
21 SENDUPDATEDEDGE(e;5, Agent(v;))

22 return G, oﬁp, ois

The output of ADPC for an agent’s private problem (shown in Figure 9a) can be viewed as
a summary of how its private subproblem impacts the shared problem. In other words, any
schedules that are consistent with the remaining shared portion of an agent’s subproblem
are guaranteed to be extensible to a solution for that agent’s subproblem. As a result,
rather than jointly reasoning over the entire MaSTN, agents only need to cooperatively
reason over the potentially much smaller shared STN.

Continuing on to Phase 2, each agent is still responsible for eliminating each of its
own timepoints in the shared STN, and does so by securing a lock on the shared timepoint
elimination ordering (line 5), selecting one of its interface timepoints vy, to eliminate (line 6),
recording vy in the shared elimination ordering (line 7), and releasing the lock (line 8).
This is done on a first-come, first-served basis. To avoid deadlocks and establish a precise
ordering over all timepoints, if two or more agents request the lock at the same time, the
lock simply goes to the agent with the smallest id. Then, before performing the basic ADPC
inner loop for this selected timepoint, the agent blocks until it has received updated edge
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(b) As agents reinstate timepoints during the reverse sweep of the DAPPC al-
gorithm, each agent responds to each message it processed during the previous
phase with updated edge information for that edge.

Figure 9: The second and third phases of our DAPPC algorithm require coordination (as
represented by block arrows) between agents to establish PPC on the shared STN.
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information with respect to all timepoints that share an edge with v but appear before it
in the shared elimination ordering (line 11). This involves adding the edge, if necessary,
and then updating its weights to the minimum of its existing and newly received weights.
Once these steps are completed, an agent can safely proceed with lines 12-21, which are
identical to the inner loop of the ADPC algorithm (Algorithm 5) except for lines 20-21,
which send updated edge information to each neighboring agent. This continues until an
agent has eliminated all of its interface timepoints.

Returning to our running example, Figure 8a represents the first step of the DADPC
algorithm. Note, not all agents need to complete eliminating their private timepoints before
an agent can proceed to eliminating its shared timepoints. For example, in Figure 9b, agents
A and C both begin eliminating before agent B does. This can be due to heterogeneity
in either agents’ capabilities or in their subproblems. In this case, agent C' appends its
timepoint TP%T to the shared elimination order before agent A appends RéT. However,
because there are no shared edges between TP%, and R?T, both agents can continue
concurrently (without blocking in line 11). Note that both agents A and C' compute a new
domain for T R/E‘T; however, agent A records only its update of [9:00,10:30] locally. It is
not until agent A selects to eliminate TR, and thus must block to receive updates due
to TP%T, that agent A records agent C’s tighter update of [9:30,10:30]. The elimination of
agent A’s remaining timepoints also leads to messages to agent B. However agent B only
receives these updates once it eliminates R?T in the final step. Note that, if agent B had
attempted to eliminate RgT before agent A had completed computing these new edges for
B, then agent B would have been forced to block until it had received the edge updates
regarding RéT, which would appear before RgT in the shared elimination order.

4.2.2 THE DAPPC ALGORITHM

The DAPPC algorithm (Algorithm 8) invokes the preceding algorithms as it accomplishes
all four phases depicted in Figure 7. It starts by invoking the DADPC algorithm, which
results in a globally DPC and triangulated network (or detection of inconsistency), along
with an elimination order over vertices (lines 1-2). The new contribution of the DAPPC
algorithm then is in agents cooperatively performing the reverse sweep to establish PPC
over the shared STN (Phase 3 in Figure 7), before invoking the APPC algorithm to finish
establishing PPC on the private STN (Phase 4).

To cooperatively establish PPC on the shared STN, the DAPPC algorithm traverses
vertices in reverse order and, instead of calculating or updating a third edge based on its
two neighboring edges as DADPC does, it updates the neighboring edges based on the
(newly) updated third edge. Thus, to guarantee that these updates are correctly shared
with and correctly incorporate information from other agents, if that third edge is external
to the agent, it must wait until it receives updated edge weights from the agent responsible
for updating it last in line 8. For an edge e;; where i < j, agent ¢ will have been the last
agent to update this edge, since its timepoint appears earliest in the elimination order. The
incident edge weights are then updated with respect to this updated third edge (lines 9—
12). After performing all updates on an edge, the agent then communicates the updated
weights to any agent that also shares the edge (line 14). This will be any agent that sent
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Algorithm 8: Distributed Partial Path Consistency (DAPPC)
Input: agent i’s local STP instance G’ = <Vi, EZ>

Output: agent i’s portion of the PPC network G* or INCONSISTENT
G, ol = (1}1, . ..Unip) ,05 = (v1,...vny) < DADPC (G?)

[y

2 return INCONSISTENT if DADPC does

3 for k=ng...1 s.t. vkEVIido

4 V VU

5 for i=ng...k+1s.t. ¢j; € E* do

6 for j =ng...i+1s.t. ejkeEido

7 if e;; € E and w;j, wj; have not yet been updated then
8 | wij, wj; < BLOCKRECEIVEUPDATEDEDGE(Agent (v;))
9 Wi min(wik, Wij + wjk)

10 Wi = min(wri, Wej + wj;)

11 Wy < min(wg;, wy; + wij)

12 | wjk min(wjx, wj; + wi)

13 for j=1...k—1s.t. eij,ejkEEi/\ijV}(do

14 | SENDUPDATEDEDGE(Agent(v;), eix)

15 APPC ((V}, EY) , ob)
16 return G'

an update regarding this edge during DADPC. Note that the mechanisms that are in place
for guaranteeing correct communication only need to be executed for external edges.

Figure 9b shows this process in action. The first timepoint to be reinstated was also
the last to be eliminated: RET. As a property of DPC graphs, RET’S domain of [8:00-9:30]
is guaranteed to be minimal, that is, represent the exact set of values that could be part of
some joint solution. The DAPPC algorithm, then, propagates the information captured by
the tighter edges and domains of variables that appear later in the elimination order back
through the MaSTN to the variables that appear earlier. Agent B kicks off the algorithm by
skipping the inner-most for loop (since it has only one neighbor that appears after it: the
de facto z reference point), and sending its updated domain to agent A. Notice that even
though agent A might need RgT’s updated domain to update both of its shared timepoints,
the message is only received once. Then, agent A reinstates Ann’s variables, one by one,
and uses this information to update the upper bounds on the edges from R?T and RgT to
T §‘T, and also the domain of RéT. After all shared timepoints have been reinstated, the
algorithm terminates after each agent finishes propagating the shared updates through its
private network (as illustrated in Figure 8b). Notice that in line 15, agent ¢ supplies the
previously computed op to APPC, ensuring that ADPC will be skipped and that timepoints
will be reinstated in reverse op order.

Overall, our DAPPC algorithm introduces three points of synchrony during execution:
contention over the shared elimination order and the two calls to BLOCKRECEIVEUPDATED-
EDGE. To simplify the understanding and analysis of our algorithms, we have made these
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synchronization points explicit. A previous formulation of these algorithms (Boerkoel &
Durfee, 2010) allows agents to proceed optimistically beyond these synchronization points.
For example, an agent could optimistically begin eliminating one of its timepoints before
officially obtaining the shared elimination order lock, as long as it reevaluates whether any
other agents had concurrently eliminated a neighboring timepoint once the lock is obtained.
Likewise, during the reverse-sweep, an agent could begin updating its private edges with
the optimistic assumption that its current view of the network is up-to-date, backjump-
ing its computation when a new edge update arrives that does not fit this assumption.
In both cases, proceeding optimistically never leads to incorrect computation, and while
computation may be wasted if invalidating updates later arrive, the agents would have sat
idle anyway waiting for those updates. Hence, at worst nothing is lost, and at best the
optimistic assumptions hold and agents have gotten a head start on further processing.

4.2.3 THEORETICAL ANALYSIS

In this section, we prove that our DAPPC algorithm is correct by showing both that it
is deadlock free (Theorem 5) and establishes PPC (Theorem 6), and also prove that the
added communication does not change the underlying runtime complexity (Theorem 7).

Theorem 5. DAPPC is deadlock free.

Proof. We start by proving first that the call to DADPC is deadlock free. There are two
lines in DADPC (Algorithm 7) where agents may block on other agents: line 5 and line 11.
In line 5, there is only one lock (on the shared elimination order), and requests for the lock
are granted on a first-come, first-served basis, with ties being broken according to agent
id. Further, once an agent has a lock on the elimination order, og, it executes two local
operations that select a variable to append to og before releasing the lock again in line 8.
SELECTNEXTTIMEPOINT is an independent, local decision requiring only locally known
information. Hence, a deadlock cannot occur as a result of contention over og.

This leaves line 11. Assume, by way of contradiction, that line 11 causes a deadlock.
This implies that there are two (or more) agents, i and j, where i # j such that each agent
is simultaneously waiting for communication from the other in line 11. Thus, there exists a
timepoint v3. € V)i( N Vg for which agent ¢ is waiting to receive updated edges from agent j,
while there is also a v; € V)]; N VLi for which agent j is waiting to receive updated edges from

agent i. Notice that vi must appear before v? in agent i’s copy of og because, otherwise,
by the time v}, appeared in og, agent i would have already sent agent j all edge updates
pertaining to v% (lines 20-21) in the previous loop iteration in which v was eliminated
(and added to og in line 7). However, for the same reason, v% must appear before vj in
agent j’s copy of og. But this is a contradiction, because there is only one shared elimination
order and agents can only append to it after being granted mutually-exclusive access. This
argument extends inductively to three or more agents, and so line 11 can also not be the
cause of a deadlock, which presents a contradiction.

Therefore the DADPC algorithm is deadlock free. Because after its call to DADPC,
the DAPPC algorithm traverses the MaSTN in the exact opposite order of the DADPC
algorithm, the proof that the remainder of the DAPPC algorithm is deadlock free follows,
mutandis mutatis. O
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Theorem 6. DAPPC correctly establishes PPC on the MaSTN.

Proof (Sketch).? The algorithm starts by correctly establishing DPC on the MaSTN. Since,
by definition, none of an agent’s private timepoints share any edges with private timepoints
of any other agent, each agent can apply ADPC to its private subproblem independently
(lines 1-2). Given the nature of the ADPC algorithm as a bucket-elimination algorithm
(solutions to the remaining subproblem are guaranteed extensible to the eliminated vari-
ables), each agent will have computed constraints over its interface variables that capture
the impact its private subproblem has on the shared subproblem. The remaining algorithm
applies the ADPC algorithm on an agent’s shared timepoints. Lines 5-8 guarantee that
a globally consistent elimination ordering of all shared timepoints is established. Finally,
lines 11 and 20-21 guarantee that the edge weights used by an agent are not stale and are
consistent among all agents involved.

Then, the algorithm executes the same operations as the second phase of the APPC
algorithm, but in a distributed fashion, using blocking communication to guarantee that all
computation is performed using only the correctly updated edge weights. O

Theorem 7. DAPPC executes in O ((np + ng) - wi?) time, where np = max; [V}j|,ng =
|Vs|, and w} is the graph width induced by o.

Proof. Beyond the lines added for communication, the DAPPC algorithm exactly executes
APPC with the caveat that the elimination order is restricted to eliminating all private
timepoints prior to all shared timepoints. The lines of code added for communication only
increase work by a constant factor within the APPC algorithm (for each edge update that is
performed by APPC, at most one message is sent or received). However, when agents must
block on edge updates from other agents, an agent may need to wait for some other agent
to complete some local computation. In the worst case, the elimination and subsequent
revisiting of all shared timepoints must be done completely sequentially, which puts the
algorithm in the same complexity class as the APPC algorithm, O ((np +ng) - w*Q). O

o

Note Theorem 7 provides a worst-case analysis. In the best case, complete concurrency
is possible, putting the runtime closer to O (nL . w;“z), where ny = |V | is less than or equal
to np + ng. That is, in the best case, no blocking occurs (and agents can execute 100%
concurrently), leading to only the costs of agents executing ADPC on their subproblems.
Note that this best case is likely only realized when, for instance, there are no external
constraints. In our empirical evaluations, which we present next, we find that run times fall
somewhere between these two extremes in practice and closer to the best case for loosely-
coupled problems.

4.3 Empirical Evaluation

In this section, we empirically evaluate our distributed algorithm for solving the MaSTP.
The performance of our distributed algorithm relies on the size of each agent’s private
subproblem relative to the size and complexity of the collective shared subproblem. The
greater the portion of the problem that is private to an agent, rather than shared, the

2. The full version of this, and all remaining proof sketches, are available in the online appendix associated
with this publication.
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greater the level of independent reasoning and concurrency, and thus the faster the overall
solve time of our distributed algorithm compared to a centralized algorithm.

4.3.1 EXPERIMENTAL SETUP

Random Problem Generator. We evaluate our algorithms for solving MaSTPs using
the random problem generator described by Hunsberger (2002), which we adapt so that
it generates multiagent STP instances. Each problem instance has A agents that each
have start timepoints and end timepoints for 10 activities. Fach activity is constrained
to occur within the time interval [0,600] relative to a global zero reference timepoint, z.
Each activity’s duration is constrained by a lower bound, [b, chosen uniformly from interval
[0,60] and an upper bound chosen uniformly from the interval [Ib,[b + 60]. In addition to
these constraints, the generator adds 50 additional local constraints for each agent and X
total external constraints. Each of these additional constraints, e;;, has a bound that is
chosen uniformly from the interval [w;; —t - (w;j + wj;), w;;], where v; and v; are chosen,
with replacement, from the set of all timepoints with uniform probability, and ¢ € [0,1] is a
tightness parameter that dictates the maximum portion that an interval can be tightened,
and whose default value is set to t = 1 in these experiments. This particular problem
generator provides us the upside of directly and systematically controlling the number of
external constraints relative to the number of (and size/complexity of) agent subproblems.

Factory Scheduling Problem Benchmark. A second source of problems is from a
multiagent factory scheduling domain (Boerkoel, Planken, Wilcox, & Shah, 2013). These
randomly generated MaSTPs simulate A agents working together to complete T tasks in
the construction of a large structural workpiece in a manufacturing environment, using re-
alistic task duration, wait, and deadline constraint settings. This publicly available bench-
mark (Boerkoel et al., 2013) distinguishes between structural constraints—the existence
of which provide the underlying structure of the temporal network (e.g., all task dura-
tions are between some minimum and maximum durations and must complete before some
makespan), and refinement constraints—those that instantiate constraints’ bounds with
particular weights (e.g., task-specific deadline and duration constraints). The former encode
general task structure and knowledge, while the later encode particular domain knowledge
of a factory manager to refine the space of schedules so that only feasible schedules remain.
In our experiments, we process all constraints equally, whether a structural constraint is re-
fined with a more particular bound or not. We evaluate our approaches on the problem data
available: both as number of agents increases (A € {2,4,8,12,16,20},T = 20-A) and also as
the total number of tasks increases (A = 16,7 € {80, 160, 240, 320, 400, 480, 560}). Unlike
our Random Problem Generator, this set of problems is distinctive in that the underlying
problem size and (inter)constrainedness of each agent problem is dictated by real-world
factory needs, rather than generated to be uniformly distributed across agents.

Experimental Procedure. To capture expected trends for a particular problem source
(Random or Factory Scheduling) and parameter setting, we evaluate the average perfor-
mance of an algorithm over 50 independently-generated trials. We include error bars rep-
resenting one standard deviation for all of our results. Note, in many cases, the error bars
appear smaller than the tick marks used to represent the data points. Our algorithms
were programmed in Java, on a 3 GHz processor using 4 GB of RAM. For the purposes of
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modeling a concurrent, multiagent system, we interrupted each agent after it was given the
opportunity to perform a single edge update or evaluation and also a single communication
(sending or receiving one message), systematically sharing the processor between all agents
involved. All approaches use the minimum fill heuristic (Kjaerulff, 1990). We applied our
approaches to connected networks of agents, although intuitively, the performance of any of
our algorithms would be enhanced by applying them to disparate agent networks indepen-
dently. Finally, all problem instances were generated to lead to consistent STP instances
to evaluate a full application of each algorithm. While not necessary for our algorithms,
excluding inconsistent STP instances avoids overestimating reductions in execution times
when an algorithm halts as soon as an inconsistency is found. Moreover, unlike previous
approaches, our algorithms do not require input STPs to be triangulated (Xu & Choueiry,
2003; Planken et al., 2008).

Evaluation Metrics. When solving a traditional CSP, one of the primary measures of a
unit of computation is the constraint check. Meisels and Zivan (2007) extend this metric to
a distributed setting by introducing the non-concurrent constraint check (ncec). Note that
agents solving a distributed problem form a partial order over constraint checks based on the
fact that (i) any two constraint checks performed within the same agent must be performed
sequentially and (ii) any constraint check z; performed by agent i prior to sending a message
m;; can be ordered before any constraint check z; performed by agent j after receipt of
m;j. The ncee metric, then, is simply the length of the longest critical path in this partial
ordering of constraint checks. We generalized the nccc metric to our work by counting the
number of non-concurrent edge updates: the number of cycles it takes to establish PPC on
the MaSTP, where each agent is given an opportunity to update or check the bounds of
a single edge during each cycle of computation, although agents may spend this cycle idly
blocking on updates from other agents.

We report non-concurrent edge updates rather than the simulated algorithm runtime
due to limitations of simulating a distributed system. First, the heterogeneity of agent
capabilities and underlying sources of message latency can vary dramatically across different
real distributed computing systems. There is no systematic, compelling way to estimate
the runtime of such distributed systems in an assumption-free, unbiased manner, so instead
we provide an implementation- and system-independent evaluation. Second, separately
maintaining the state of many agents in a simulated distributed system introduces a large
amount of overhead due to practical issues such as memory swapping, which unduly inhibits
accurate and fair algorithm runtime comparisons. Since DAPPC requires a significant
number of messages (which would typically incur latency), we separately count the number
of computation cycles where at least one agent sends a message, which as described later,
allows for rudimentary runtime projections with latency. We report the total number of
messages sent by DAPPC later in Section 5.3.1, where we compare it against our distributed
temporal decoupling algorithm.

4.3.2 EMPIRICAL COMPARISON

One of the main benefits that we associate with performing more of a computation in a
distributed fashion is that it promotes greater concurrency. In this section, we explore how
well our distributed algorithms can exploit concurrent computation, reporting the number
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of non-concurrent edge updates along with the number of computational cycles that require
messages. We compare the following approaches:

e FW — the Floyd-Warshall algorithm executed on a centralized version of the problem;

e APPC — our APPC algorithm executed by a single agent on a centralized version of
the problem;

e DAPPC w/ Latency — our DAPPC algorithm where we assume that every compu-
tational cycle that might incur message latency requires an-order-of-magnitude more
time than performing a single edge update; and

e DAPPC w/o Latency—our DAPPC algorithm with no extra message latency
penalties.

Random Problems. Figure 10a compares each algorithm’s performance on problems
from the Random Problem generator, as the level of coupling, as measured by the number
of external constraints increases. As one would expect, as the density of the overall net-
work increases, the APPC approaches the same costs as the fully-connected FW algorithm.
Without latency, our DAPPC algorithm, in expectation, maintains a steady improvement
over the its centralized counterpart, ranging from 12 times speedup (centralized computa-
tion/distributed computation) when X = 100 to a nearly 23 times speedup when X = 3200,
which is within 12% of perfect speedup for 25 agents.

Interestingly, even when there are no external constraints (X = 0), our DAPPC algo-
rithm achieves only an 18-fold, rather than 25-fold, improvement over APPC. This is due
to heterogeneity in the complexity of individual agent problems. When there are no or
only very few external constraints, there are few opportunities for agents with easy-to-solve
local problems to help other agents out, and thus effectively load-balance. As the number
external constraints increases, so does the overall time complexity of both the APPC and
DAPPC w/o Latency approaches; however, opportunities for load-balancing and synchro-
nization points also increase. These results indicate that the increased opportunities for
load-balancing outweigh the costs of increased synchronization as the number of external
constraints increases.

Coordination does, however, introduce overhead. For the DAPPC w/ Latency curve of
Figure 10a, we try to account for message latency by penalizing our DAPPC with the extra
computational cost equivalent to 10 edge updates for every message cycle. In practice, this
represents only a rough estimate of the costs of communication, since (i) not all messages
sent will require an agent to block (i.e., many messages will be received prior to their need)
and (ii) message latency could lead to compounding delays elsewhere in the network. Even
with a penalty for message latency, our distributed approach maintains an advantage over
the centralized approach, albeit a much smaller one (e.g., only a 20% improvement when
X = 100). As the number of external constraints increases, however, the effects of the
additional latency penalty become mitigated since (i) as the network becomes more dense,
each new external constraint is increasingly less likely to spur new messages (i.e., an edge
would have already been created and communicated), and (ii) the extra message latency
costs are amortized across a greater number of agents.
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Figure 10: Empirical comparison of DAPPC on the randomly generated problem set.

Figure 10b shows the number of non-concurrent edge updates as the number of agents
grows. The number of non-concurrent edge updates grows linearly with the number of
agents across all approaches. Interestingly, here when we estimate the effects of message
latency, there is a cross-over point between APPC and DAPPC w/ Latency. A certain level
of message latency can mean that, for a small number of agents, it is faster to centralize
computation using APPC than to utilize parallelism with slow communication, but as the
number of agents grows, the centralized problem becomes unwieldy and the distribution
of computation makes DAPPC w/ Latency superior once again. Figure 10b also shows
that the expected runtime of DAPPC increases more slowly than FW or APPC, and that
DAPPC’s speedup increases with the number of agents as seen by the widening relative gap
between the APPC and DAPPC curves. Thus, DAPPC scales with the increasing number
of agents better than APPC.

Factory Scheduling Problems. At a high level, Figure 11 for the Factory Scheduling
Problems shows many of the same trends that we saw in Figure 10. There are, however, a
few notable differences. First, we do not plot using a log scale, like in Figure 10, since (i)
the parameters grow on a linear scale, and (ii) we leave out the much more expensive FW
approach so that we can better compare the most similar approaches. Second, the number
of tasks and constraints across agents’ subproblems are not uniform, like in the Random
Problem case, leading to constraint networks that are based on underlying structure of
realistic problems. As both the number of tasks and agents increase, our DAPPC clearly
scales better than its centralized counter-part, demonstrating a robustness to heterogeneity
across agent problems. When the number of tasks is low (7" = 80), DAPPC exhibits 8.5
times speedup over APPC which steadily grows to a 12.3 fold speedup as the number tasks
grows (recall problems are distributed across 16 agents). Similarly, the relative gap between
DAPPC and APPC grows linearly in the number of agents, settling to within 30% of perfect
speedup. Finally, this set of experiments more clearly demonstrates that the costs of high
message latency can be overcome as the number or complexity of agents’ local problems
grows sufficiently high.
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Figure 11: Empirical comparison of DAPPC on the factory scheduling problem set.

Total Effort. The minimum-fill variable ordering heuristic myopically selects the time-
point, from a set of timepoints, whose elimination it expects will lead to the fewest added
fill edges. Since the centralized algorithm, APPC, places no restrictions on this heuristic,
we expect the heuristic to perform well, adding few fill edges. DAPPC, on the other hand,
both restricts private timepoints to be eliminated prior to shared timepoints, and restricts
each agent to only eliminating its own timepoints. Intuitively, we expect each of these addi-
tional restrictions to hurt heuristic performance, that is, to lead to triangulations with more
fill edges. An increase in the overall number of fill edges, in turn, increases the number of
edges, and thus overall number of edge updates required to update the network. To evaluate
how efficiently effort is distributed across agents, we compare APPC and DAPPC in the
total number of fill edges added and the total number of edge updates (summed across all
agents). We compute the ratio of DAPPC wversus APPC effort using both these metrics
across the two parameters that most directly impact constraint density: number of external
constraints X for our randomly generated problems, and the number of tasks T for the
factory scheduling problems. Results for both are displayed in Figure 12.

Overall, for both algorithms, the total number of fill edges and edge updates increases as
X or T increases. Figure 12a displays that relative to APPC, the number of fill edges and
edge updates computed by DAPPC increases at a faster rate with low X values, and at a
slower rate for higher X values, leading to a 57% increase in the total edge updates and 11%
increase in total fill edges at its peak. There are multiple trends occurring here. Early on
(X =0...200), heterogeneity between individual agents’ private subproblems dictates that
the elimination of shared timepoints is done by the agent that gets there first, which is not
necessarily correlated with the least-connected shared timepoint. As the number external
constraints increases, however, an agent’s ability to load balance the elimination of shared
timepoints improves—when more agents are spending more time competing for the shared
elimination order lock, the one with the least amount of (shared) computation (which is
correlated with fewest added shared fill edges) will get it. This improved load-balancing
is also accentuated by the fact that as X increases, so does the shared network density,
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Figure 12: Empirical comparison of DAPPC in terms of total effort.

increasing the number of fill edges that must be inevitably added by both approaches, and
thus dampening the relative advantage that APPC has over DAPPC.

The results displayed in Figure 12a show the trends as the density of external constraints
increases on the random problems. Figure 12b, on the other hand, shows that when the
overall number of constraints is increased more generally, the relative total effort mono-
tonically decreases on the factory scheduling problems. This validates our previous study
that showed that eliminating private timepoints before shared timepoints actually improves
the performance of variable elimination heuristics by taking advantage of structural knowl-
edge to avoid increasing the connectedness between agents’ problems (Boerkoel & Durfee,
2009). Thus, as the complexity of local problems grows relative to the complexity of the
shared problem, as is the case for these well-structured, loosely coupled factory schedul-
ing problems, the distributed application of the variable ordering heuristic (as in DAPPC)
improves performance over its centralized application (as in APPC). Interestingly, in the
factory scheduling problem set, the variability in the number of shared timepoints per agent
initially causes the relative margin of extra fill edges to be much larger than in our randomly
generated problems, settling after a sufficient number of tasks are added.

4.3.3 SUMMARY

In this section, we presented the DAPPC algorithm, our distributed version of the P3C al-
gorithm, which exchanges local constraint summaries so that agents can establish minimal,
partially path consistent MaSTNs. The DAPPC algorithm utilizes our DADPC algorithm
in which an agent independently eliminates its private timepoint variables before coordinat-
ing to eliminate shared variables, which has the effect of exactly summarizing the impact
its subproblem has on other agents’ problems. The remainder of the DAPPC algorithm is
essentially a reverse sweep of the DADPC algorithm, where care is taken to ensure that
an agent synchronizes its edge weights with those of other agents prior to updating its
local edges. We prove that our algorithm correctly calculates the joint solution space of
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an MaSTP without unnecessarily revealing private variables. While DAPPC has the same
worst-case complexity as its centralized counterpart, we show empirically that it exploits
concurrency to outperform centralized approaches in practice. It scales much more slowly
with the number of agents than centralized approaches and achieves within 12% of perfect
speedup as the relative size and complexity of agents’ local problems grow in the problems
we studied.

5. A Distributed Algorithm for Calculating Temporal Decouplings

Our DAPPC algorithm outputs the space of all possible joint solutions for an MaSTP, as
depicted in Phase 4 of Figure 7. However, as discussed in Section 1, a potential limitation
of this approach is that dependencies between agents’ problems are maintained. So agents
must coordinate decisions using this full representation to avoid giving inconsistent advice,
such as if Ann’s agent advises Ann to start recreation at 8:00 while Bill’s agent advises him
to wait until 9:00. Thus, any and all advice by one agent that could potentially lead to
an update (e.g., Ann’s decision to start recreation at 8:00) would need to be propagated
before some other agent offers advice that can be guaranteed consistent. This presents a
challenge if updates are frequent while communication is expensive (e.g., slow), uncertain
(e.g., intermittent), or otherwise problematic. Agents must coordinate to re-establish partial
path consistency either by re-executing our DAPPC algorithm or by employing more recent
incremental versions of our algorithm that recognize that updates might only propagate
through a small portion of the MaSTN (Boerkoel et al., 2013). A temporal decoupling,
on the other hand, gives each agent the ability to reason over its user’s local schedule in a
completely independent manner. This allows agents to can give unilateral, responsive, and
sound, though generally incomplete, advice.

The goal of the Multiagent Temporal Decoupling (MaTD) algorithm is to find a set
of decoupling constraints Ca that render the MaSTP’s external constraints C'xy moot, and
thus agents’ subproblems independent (see Section 3.2). This goal can be achieved by
assigning values to all of the variables on the reverse sweep (as in Figure 1b), but doing
so sacrifices all of the flexibility that is provided by maintaining solution spaces. Our
insight is that assigning private timepoints does not matter to independence, and so we can
assign just the shared variables, and then only tighten private variables in response to these
assignments (Section 5.1). We show that, in many cases, assignments to shared variables can
be relaxed to further increase flexibility (Section 5.2). Overall, our algorithms compute a
temporal decoupling while making heuristic choices to reduce flexibility sacrificed. Later in
Section 5.3, we describe ways of measuring flexibility, and empirically evaluate how different
algorithmic choices affect flexibility as well as runtime.

As shown in Figure 13, Phases 1 and 2 of our algorithm, which establish DPC on the
MaSTP, are the same as the DAPPC algorithm (shown in Figure 7). In the new Phase
3, however, agents establish a temporal decoupling by assigning their shared timepoints in
the reverse order that agents eliminated them in Phase 2. Next, in the optional Phase 4,
agents revisit each shared timepoint in original elimination order and relax all decoupling
constraints to the maximum extent possible, resulting in a minimal decoupling. Phase 5,
in which each agent independently establishes PPC on its local problem, is again the same
as the last phase of DAPPC algorithm.
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Figure 13: Our MaTD algorithm replaces the shared DAPPC phase of the DAPPC al-
gorithm (depicted in Figure 7) with a decoupling phase that assigns shared timepoints in
reverse elimination order (Phase 3) and an optional RELAXATION phase, in which timepoints
are revisited and flexibility is recovered to the extent possible.
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5.1 A Distributed Multiagent Temporal Decoupling Algorithm

The MaTD algorithm, presented as Algorithm 9, starts (lines 1-2) by executing our DADPC
algorithm (Algorithm 7 on page 119) to triangulate and propagate the constraints, elimi-
nating the shared timepoints Vg last. If DADPC propagates to an inconsistent graph, the
algorithm returns INCONSISTENT; else, as illustrated in the first two phases of Figure 13,
the resulting MaSTN captures the implications of agents’ private constraints as reflected in
the tighter domains of the shared timepoints. Next, MaTD initializes an empty Ca (line 3)
and then steps through vertices in reverse elimination order. In our example, this means
starting with RgT (line 4). However, as an agent reinstates each interface timepoint, it sim-
ply assigns it rather than updating all incident edges as was the case in the reverse sweep of
the DAPPC algorithm. Typically, before assigning a reinstated timepoint, its domain must
be updated with respect to any previously assigned shared timepoints. However, because
RE’T is the first reinstated variable, MaTD skips over the inner loop (lines 7-11) because
there are no vertices later than it in og.

At this point, the domain of RET is guaranteed to be minimal, meaning that agent B
can assign it any remaining value and still be guaranteed that it will be globally consistent.
The choice of which value to assign is made in line 12 by the function HEURISTICASSIGN.
By default, HEURISTICASSIGN assigns the timepoint to the midpoint of its bounds inter-
val to split remaining flexibility down the middle; later we discuss alternative assignment
heuristics. Notice that if the DADPC algorithm had not first been executed, agent B would
assign RgT to the midpoint of its original domain of 8:00-12:00 rather than its updated do-
main of 8:00-9:30, which would result in an inconsistent assignment (to 10:00). However,
MaTD instead adds the constraint that RZ,. happens at 8:45 to Ca (line 14). In line 13,
this is sent to agent A, because RgT shares external edges with Ann’s timepoints.

The next vertex is TR?T. Note, agent A would consider processing this variable right
away, but the inner loop (lines 7-11) forces agent A to wait for the message from agent B
(line 9). Once the message arrives, agent A updates its edge weights accordingly (lines 10-
11). In this case, given that TR?T is at least 60 minutes after R?T = 8:45, TR?T7S domain
is tightened to [9:45, 10:30]. Then in line 12, agent A chooses the decoupling point by
splitting the difference, thus adding (and communicating) the constraint that TR?T occurs
at 10:08. This same process is repeated until all timepoints in Vg have been assigned. The
resulting network and decoupling constraints are shown in Phase 3 of Figure 13.

To avoid inconsistency due to concurrency, before calculating decoupling constraints for
v, an agent blocks in line 9 until it receives the fresh, newly-computed weights w.;, w;,
from v;’s agent (Agent(v;), as sent in line 13) for each external edge e, € E% where j > k.
While this implies some sequentialization, it also allows for concurrency whenever variables
do not share an external edge. For example, in Phase 3 of Figure 13, because TP%T and
Rg‘T do not share an edge, once agent A has assigned TR?T, both agent A and agent C
can concurrently and independently update and assign Rg‘T and T P%T respectively.

Finally, for the moment skipping over optional Phase 4 in Figure 13, each agent estab-
lishes PPC in response to its new decoupling constraints by executing APPC on its pri-
vate STN in Phase 5. Our algorithm represents an improvement over previous approaches
(Hunsberger, 2002; Planken, de Weerdt, & Witteveen, 2010a) in that it: (i) is distributed,
rather than centralized; (ii) executes on a sparser, more efficient network representation;
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Algorithm 9: Multiagent Temporal Decoupling (MaTD) with optional RELAXATION
(MaTDR)
Input: G', agent i’s known portion of the distance graph corresponding an MaSTP
instance M, and a field indicating whether to RELAX decoupling
Output: C’Z, agent i’s decoupling constraints, and G?, agent i’'s PPC distance graph
w.r.t. C%

1 G4 0%, 05 = (v1,v9,...v,) «<DADPC (G

2 return INCONSISTENT if DADPC does

3C\=10

4 for £k =n...1 such that v EVIi do

5 Ve« VU

6 wg{PC — Wz, ’kazPC — Wiy

7 for j =n...k+ 1 such that Jej, € E* do

8 if e;, € E then

9 | w.j, wj. < BLOCKRECEIVEUPDATEDEDGES(Agent(v;))
10 W 4= Min(w,g, Wzj + Wjk)
11 Wiz — min(wk,, wi; + wj2)
12 Wy, Wyk, — HEURISTICASSIGN (vg, G)
13 SENDUPDATEDEDGE(w,, w5, Agent(vj) Vj < k,ejr € B
14 Cly + O U{(z — v € [~wap, wi2])}

15 if RELAX then
16 | G Ck + RELAXATION (G, wPPC)

17 return APPC (gi+A,oiL), N

(iii) eliminates the assumption that input graphs must be consistent; and (iv) performs
decoupling as an embedded procedure within the existing DAPPC algorithm, rather than
as an outer-loop.

As mentioned, a simple default for HEURISTICASSIGN is to assign v; to the midpoint
of its directional path consistent domain (which corresponds to using the rules w,; <
Wyl — %(wzk + Wk, ); Wy < —wk). In Section 5.3.2, we explore and evaluate an alternative
HEURISTICASSIGN function. In general, however, narrowing variable assignments to single
values is more constraining than necessary. Fortunately, agents can optionally call a relaz-
ation algorithm (introduced in Section 5.2 and shown in Figure 13 as Phase 4) that replaces
Ch with a set of minimal decoupling constraints.

Theorem 8. The MaTD algorithm has an overall time complexity of O ((np +ng) -ij),

where np = max; |Vj| and ng = |Vs|, and requires O (mx) messages, where mx = |Ex|.

Proof. The MaTD algorithm calculates DPC and PPC in O ((np + ng) - w}?) time. Unary,
decoupling constraints are calculated for each of ng external variables, vy € Vg (lines 4-
14), after iterating over each of v’s O (w}) neighbors (lines 7-11). Thus decoupling re-
quires O (ng-w}) € O (ng-w;?) time, and so MaTD has an overall time complexity of
@) ((np +ng) -wj;Q). The MaTD algorithm sends exactly one message for each external
constraint in line 13, for a total of O (mx) messages. O
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Theorem 9. The MaTD algorithm is sound.

Proof. Lines 1-2 return INCONSISTENT whenever the input MaSTP M is not consistent. By
contradiction, assume that there exists some external constraint c;, with bound b;, that
is not satisfied when the decoupling constraints c;. and c,,, calculated by MaTD, with
bounds b/, and b’zy respectively, are. In such a case, b/, + bfzy > byy. WLOG, let < y in
the elimination order og.

Note, by the time v, is visited (in line 4), the following are true:

Wgy < bzy; (1)
Way + Wyz = 0; (2)
b/zy = Wzy- (3)

(1) is true since line 1 computes DPC using og; (2) is true since line 12 will have
already been executed for vy, and (3) is true by construction of c;, in line 14. The only
update to w;, occurs in line 11, and, since ey, is external, one of these updates will be

A
Wy, = Min(wWgz, Wey + Wyz), and thus

’UJ;Z < Wyy + Wy z- (4)
Combining (1), (2), and (4), yields the fact:
Wy, + Way < Way < by (5)

The only time w/,, may be further updated is in future iterations of line 11 and then possibly
in line 12 to produce w!,, but both lines 11 and 12 only tighten (never relax). Thus, with
(5) this implies that

wg,n/z +wzy < w;z + Way < Way < byy. (6)

In line 14, ¢, is constructed such that b, = w!,; this fact, along with (3) and (6), implies
brz + by < byy. However, this is a contradiction to the assumption that bl 4 b, > by, so

the constraints Ca calculated by MaTD form a temporal decoupling of M. O
Theorem 10. The MaTD algorithm is complete.

Proof (Sketch). The basic intuition for this proof is provided by the fact that the MaTD
algorithm is simply a more general, distributed version of the basic backtrack-free assign-
ment procedure that can be consistently applied to a DPC distance graph. We show that
when we choose bounds for new, unary decoupling constraints for vy, (effectively in line 12),
W, W, are path consistent with respect to all other variables. This is because not only
is the distance graph DPC, but also the updates in lines 10-11 guarantee that w,j, wy, are
path consistent with respect to vy, for all j > k (since each such path from v; to v;, will be
represented as an edge ej; in the distance graph). So the only proactive edge tightening
that occurs, which happens in line 13 and guarantees that w,; + wi, = 0, is done on path-
consistent edges and thus will never introduce a negative cycle (or empty domain). So if the
MaSTP is consistent, the MaTD algorithm is guaranteed to find a temporal decoupling. [
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5.2 A Minimal Temporal Decoupling Relaxation Algorithm

One of the key properties of a minimal MaSTP is that it can represent a space of consistent
joint schedules, which in turn can be used as a hedge against scheduling dynamism. The
larger this space of solutions is, the more flexibility agents have to, e.g., add new constraints,
while mitigating the risk of invalidating all solution schedules. Flexibility, then, is a
measure of the completeness of the solution space. Flexibility is good in that it increases
agents’ collective abilities to autonomously react to disturbances or new constraints, but
at the same time, flexibility in the joint solution space limits each individual agent from
unilaterally and independently exploiting this autonomy. Our MaTD algorithm explicitly
trades away flexibility for increased independence during the assignment process in line 12.
In this section, we describe an algorithm that attempts to recover as much flexibility as
possible to maximize agents’ ability to autonomously, yet independently, react to dynamic
scheduling changes.

The goal of the Multiagent Temporal Decoupling with Relaxation (MaTDR), which
is the version of the MaTD that executes the RELAXATION algorithm (Algorithm 10) as
a subprocedure, is to replace the set of decoupling constraints produced by the MaTD
algorithm, Ca, with a set of minimal decoupling constraints, C'/A. Recall from page 111
that a minimal decoupling is one where, if the bound of any decoupling constraint ¢ € CZ
for some agent i is relaxed, then {S} A S? +As- STy} is o longer guaranteed to form
a decoupling. Clearly the temporal decoupling produced when running MaTD using the
default heuristic on the example problem, as shown in Phase 3 of Figure 13, is not minimal—
the decoupling bounds on TP% could be relaxed to include its entire original domain and
still be decoupled from T° Rg‘T. The basic idea of the RELAXATION algorithm is to revisit
each external timepoint vy and, while holding the domains of all other external timepoint
variables constant, relax the bounds of v;’s decoupling constraints as much as possible.

We describe the execution of the algorithm by describing an execution trace over the
running example problem. As depicted in Phase 4 of Figure 13, RELAXATION works in orig-
inal og order, and thus starts with TP%.. First, Chris’ agent removes TP$’s decoupling
constraints and restores T P%T’s domain to [9:30,10:00] by updating the corresponding edge
weights to their stored DPC values (line 3). Notice that lines 2-19 are similar to the reverse
sweep to the DAPPC algorithm, except that a separate, “shadow” ¢ bound representa-
tion is used and updated only with respect to the original external constraint bounds (not
tightened edge weights) to ensure that the later-constructed decoupling constraints are min-
imally constraining. Also, in lines 13-18, a decoupling constraint is only constructed when
the bound of the potential, new constraint (e.g., dx) is tighter than the already implied edge
weight (e.g., when dx, < wy,). For example, the only constraint involving TP%T is that
it should occur before TR?T. Therefore because TR?T is currently set to occur at 10:08
(6=10:08) and TP%; is already constrained to occur before 10:00 (w =10:00), § £ w, no
decoupling constraints are added to the set C’/A for TP%., (allowing it to retain its original
domain of [9:30,10:00]).

The next variable to consider is RéT, whose domain relaxes back to [8:00,9:30]. However,
since RéT shares a synchronization constraint with RET? whose current domain is [8:45,8:45],
Ann’s agent will end up re-adopting the original decoupling constraint of RéT € [8:45,8:45].
Next, agent A recovers T’ Rg‘T’s original DPC domain of [9:30,10:30] and tightens it to ensure
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Algorithm 10: RELAXATION

Input: G¢, and the DPC weights, wfkpc, w,gpc, for each vy, € Vi

Output: CX, agent ¢’s minimal decoupling constraints, and G*, agent i’'s PPC distance
graph w.r.t. C’Z

1 0% 0

2 for k =1...n such that v EV} do

3 W, whPC | wy, « wpPC

4 5zk < 5kz — 0

5 for j =1 to n such that Jej;, € E' do

6 if e;, € E then

7 if j < k then w,j, w;, <~ BLOCKRECEIVEUPDATEDEDGES(Agent(v;))
8 if c;ji, exists then 0,5 <—min(6.x, bjr — wj2)
9 if cj; exists then 0y, <—min(dy., byj — w;)
10 else if j < k then

11 Wk <= min(w.k, o + wjk)

12 | Wy min(wg,, Wy + w;z)

13 if 0, < wy, then

14 Wy < 6kz

15 | CR 4 CRU{(z— v < 6k2)}
16 if ., < w,; then

17 Wyl < 5214:

18 | CR <+ CRU{(ve—2 < 0)}

19 SENDUPDATEDEDGE(w,, ws, Agent(vj) Vi > k,ejx € E%

.
20 return G*,Cy

that it follows TP%p’s new domain of [9:30,10:00]. In this case, decoupling from TP,
requires a new lower bound of 10:00 and results in a more flexible domain of [10:00,10:30]
for T’ Rg‘T. The minimal decoupling constraints and corresponding temporal network that
RELAXATION calculates for the running example are presented in Phase 4 of Figure 13 for the
shared portion of the network. Similarly, Phase 5 shows the implications of incorporating
the decoupling constraints on each agent’s PPC subproblem.

The RELAXATION algorithm applies two different kinds of updates. When the edge e;y,
considered in line 6 is local to agent ¢, the RELAXATION algorithm executes lines 11-12,
which update the actual edge weights w,; and wg, in the same manner as the DAPPC
algorithm, guaranteeing that the values captured within the bounds interval are consistent
with at least some value of v;’s domain (so that they will be locally PPC). On the other
hand, if edge ej;, is external, the RELAXATION algorithm instead executes lines 8-9, which
update the shadow edge weights §,, and g, in a way that guarantees they will be consistent
with all values of v;’s domain (so that they will be temporally decoupled). Note that while
these updates are more restrictive, they only lead to new decoupling constraints if they are
tighter than vg’s current domain.
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Theorem 11. The RELAXATION algorithm has an overall time complezity of O (ng - w})
and requires O (mx) messages.

Proof. Unary, decoupling constraints are recalculated for each of ng shared variables, but
require visiting each of v, € Vg’s O (w}) neighbors (lines 2-19), after iterating over each of

vgp's O (w}) neighbors (lines 5-12). Thus the RELAXATION algorithm requires O (ng - w)
time. The RELAXATION algorithm sends exactly one message for each external constraint

in line 19, for a total of O (mx) messages. O

Notice that the RELAXATION algorithm is called as a subroutine of the MaTD algorithm,
but runs in less time, so the overall MaTDR algorithm runtime is still O ((np + ng) - wi?).

Theorem 12. The local constraints calculated by the RELAXATION algorithm form a min-
imal temporal decoupling of S.

Proof (Sketch). The proof that the set C/A forms a temporal decoupling is roughly analogous
to the proof for Theorem 5.1. By contradiction, we show that if the bound b,, of some
decoupling constraint c,, € C/A is relaxed by some small, positive value €,, > 0, then C/A
is no longer a temporal decoupling. This is because lines 8-9 imply that there exists some
y such that either b,, = byy — b.y, and thus by, + €z + by > byy (and thus no longer is a
temporal decoupling), or that b,, = byy — (byz + €22) (and so is either not a decoupling or
requires altering b,, in order to maintain the temporal decoupling). O

5.3 Evaluation

In the following subsections, we reuse the basic experimental setup from Section 4.3 to
empirically evaluate the performance of the MaTDR algorithm’s computational effort in
Section 5.3.1, and the impact on flexibility of variations of the MaTDR algorithm in Sec-
tion 5.3.2. Like the original DADPC algorithms, our decoupling algorithms’ performance
depends on the size of each agent’s private subproblem versus the size of the shared subprob-
lem. As the number of external constraints relative to the number of agents increases, not
only can less reasoning occur independently, but also the resulting decoupled solution spaces
are subject to an increasing number of local constraints, and thus diminish in flexibility.

5.3.1 EVALUATION OF COMPUTATIONAL EFFORT
We empirically compared:

e MaTDR - the default MaTD algorithm with RELAXATION;

e Centralized MaTDR - a single agent that executes MaTDR, on a centralized version
of the problem;

e DAPPC - the execution of the DAPPC distributed algorithm for establishing PPC
for an MaSTP (but not a decoupling); and

e TDP—our implementation of the fastest variation (the RGB variation) of the (cen-
tralized) TDP algorithm as reported by Hunsberger (2002).
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To implement the original TDP approach, we use the Floyd-Warshall algorithm to initially
establish FPC, and the incremental update described by Planken (2008) to maintain FPC
as new constraints are posted. We evaluated approaches across two metrics. The non-
concurrent edge update metric, which, as described in Section 4.3, is the number computa-
tional cycles during which an edge is updated before all agents in the simulated multiagent
environment have completed their executions of the algorithm. The other metric we report
in this section is the total number of messages exchanged by agents.

Random Problems. We evaluate our algorithms on the same randomly generated and
factory scheduling problem sets as described in Section 4.3.1. The results shown in Figure 14
demonstrate that the MaTDR algorithm clearly dominates the original TDP approach in
terms of execution time, even when the MaTDR algorithm is executed in a centralized
fashion, demonstrating the advantages of exploiting structure by using PPC (versus FPC)
and dividing the problem into local and shared subproblems. The other advantage of
MaTDR over the original TDP approach is that it incorporates the decoupling procedure
within a single execution of constraint propagation rather than introducing decoupling
constraints one at a time as an outer loop that reestablishes FPC after each new decoupling
constraint is added. Additionally, when compared to the centralized version of the MaTDR
algorithm, the distributed version has a speedup that varies between 19.4 and 24.7. This
demonstrates that the structures of the generated problem instances support parallelism
and that the distributed algorithm can exploit this structure to achieve significant amounts
of parallelism.

The MaTDR algorithm also dominates the DAPPC algorithm in terms of both compu-
tation and number of messages. This means the MaTDR algorithm can calculate a temporal
decoupling with less computational effort than the DAPPC algorithm can establish PPC
on the MaSTP. While the MaTDR is generally bound by the same runtime complexity as
the DAPPC (due to both applying the DADPC algorithm), the complexity of the actual
decoupling portion of the procedure is less in practice as argued in Theorem 8. So while the
MaTDR algorithm calculates and communicates new bounds for all unary reference edges,
by doing so it renders all external edges moot and thus does not need to reason over them.
In contrast, the DAPPC algorithm must calculate, communicate, and maintain new bounds
for every shared edge. The total number of messages sent by both algorithms grows lin-
early with the number of agents and, perhaps less intuitively, sublinearly with the number
of external constraints. This indicates that, as the network becomes more saturated, each
new external constraint is increasingly more likely to be expressed over an edge that would
already require communication, and thus requires no new messages.

Factory Scheduling Problems. When we also evaluated our algorithms using the fac-
tory problem set, MaTDR exhibited similarly large speedups over the Centralized MaTDR
approach (ranging from 4 to 5 orders of magnitude depending on the number of tasks). We
excluded the TDP approach in our charts in Figure 15 to zoom in on the differences between
the (Centralized) MaTDR and DAPPC algorithms, which were much more subtle. While
still achieving impressive speedups over its centralized counterpart, the MaTDR algorithm’s
computational advantages over DAPPC are less pronounced than before (Figure 14) due to
the more loosely-coupled nature of the factory problem set. Similarly, the relative drop in
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Figure 14: Empirical evaluation of MaTDR on our randomly generated problem set.

external constraints leads, in turn, to fewer shared edges, and thus fewer messages overall,
mitigating the more substantial gap in Figures 14c and 14d.

The fact that the MaTDR algorithm dominates the DAPPC algorithm implies that,
even if the original TDP algorithm were adapted to make use of the state-of-the-art DAPPC
algorithm, the MaTDR algorithm would still outperform the revised TDP approach in terms
of computational effort. Overall, we confirmed that we could exploit the structure of the
MaSTP instances to calculate a temporal decoupling not only more efficiently than before,
but also in a distributed manner, avoiding the (previously-required) centralization costs,
and exploiting parallelism to lead to significant levels of speedup. We next ask whether
the quality of a solution produced by the MaTDR algorithm is competitive in terms of the
solution space completeness.

5.3.2 EVALUATION OF COMPLETENESS (FLEXIBILITY)

Hunsberger (2002) introduced two metrics, flexibility (Flex) and conversely rigidity
(Rig), that act as relative measures of the number of total solutions represented by a
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Figure 15: Empirical evaluation of MaTDR on the factory scheduling problem set.

temporal network, allowing the quality or “level of completeness” of alternative temporal
decouplings to be compared. He defined the flexibility between a pair of timepoints, v; and
vj, as the sum Flex(v;,vj) = w;j + wj; which is always non-negative for consistent STPs.
The rigidity of a pair of timepoints is defined as Rig(v;,v;) = m, and the rigidity
over an entire STP is the root mean square (RMS) value over the rigidity values for all
pairs of timepoints:

Rig(G) = 2 > [Rig(vi,v;)]*.

n-(n+1) =
This implies that Rig(G) € [0,1], where Rig(G) = 0 when G has no constraints and
Rig(G) = 1 when G has a single solution (Hunsberger, 2002). Since Rig(G) requires FPC
to calculate, in our work we apply this metric only as a post-processing evaluation tech-
nique by centralizing and establishing FPC on the temporal decouplings returned by our
algorithms. There does exist a centralized, polynomial time algorithm for calculating an
optimal temporal decoupling (Planken, de Weerdt, & Witteveen, 2010a), but it requires
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an evaluation metric that is a linear function of distance graph edge weights, which the
aggregate rigidity function, Rig(G), unfortunately, is not.

Our MaTDR algorithm’s default HEURISTICASSIGN function assigns a timepoint to the
midpoint of its currently-calculated bounds. While the assumption is that assignment to the
midpoint (along with the relaxation) attempts to divide slack evenly, in practice subsequent
assignments are influenced by earlier ones. For example, in Figure 13, TR?T is assigned
to 10:08AM, rather than 10:00AM, due to the earlier assignment of RET. Hence, perhaps
there are smarter ways to assign timepoints that maintain greater amounts of flexibility.
We evaluate one such alternative heuristic, the locality heuristic, which can be thought of
an application of the least-constraining value heuristic that attempts to be less myopic in its
assignment procedure by considering the loss of flexibility of neighboring timepoints. Here,
an agent assigns vy to the value that reduces the domains of its neighboring timepoints the
least. As described by Hunsberger (2002), the original TDP approach attempts to maximize
flexibility by progressively tightening the reference bounds of timepoints by a fraction of
the total amount that would be required for decoupling.

Evaluation. In this set of experiments, we compare the rigidity of the temporal decou-
plings calculated by:

e Midpoint — a variant of the MaTD algorithm where HEURISTICASSIGN uses the
(default) midpoint heuristic, but without RELAXATION;

e Midpoint+R — the MaTD algorithm using the midpoint heuristic along with the
RELAXATION sub-routine;

e Locality — a variant of the MaTD algorithm where HEURISTICASSIGN assigns vy, to
the value that reduces the domains of its neighboring, local timepoints the least (no
RELAXATION);

e Locality+R — the MaTD algorithm using the locality heuristic along with the RE-
LAXATION sub-routine;

e Input — the rigidity of the input MaSTN; and

e TDP — our implementation of Hunsberger’s RLF variation of his TDP algorithm
(where 7 = 0.5 and € = 1.0 which lead to a computational multiplier of approximately
9) that was reported to calculate the least rigid decoupling by Hunsberger (2002)
(rather than the RGB variation used earlier, which was reported to be most efficient).

In our first experiment, we used our Random Problem Generator with parameter set-
tings A = 25 and X = {50,200,800}. The left-hand side of Table 2 displays the rigidity
of the temporal decoupling calculated by each approach over these problems. Unsurpris-
ingly, as the number of external constraints increases, so does the level of rigidity across
all approaches, including the inherent rigidity of the input MaSTN. Combing these rigidity
results with our evaluation of computational effort displayed in Figure 14, we can look at
the trade-offs between efficiency and quality of our temporal decoupling approaches. On
average, as compared to Midpoint, the Midpoint+R approach decreases rigidity by 51.0%
while increasing computational effort by 30.2%, and the Locality approach decreases rigidity
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Table 2: A comparison of how much four different MaTD variants increase rigidity as com-
pared to the input MaSTN and the previous centralized approach (TDP) across randomly
generated and factory scheduling problem sets.

Randomly Generated Problems Factory Scheduling Problems

X =50 X =200 X =2800 T=80 T=320 T =560
Input 0.418 0.549 0.729 0.274 0.148 0.119
Locality+R ~ 0.508 0.699 0.878 0.756 0.838 0.838
Midpoint+R  0.496 0.699 0.886 0.765 0.853 0.855
Locality 0.621 0.842 0.988 0.965 0.983 0.982
Midpoint 0.628 0.849 0.988 0.968 0.983 0.988
TDP 0.482 0.668 0.865 0.720 0.722 0.706

by 2.0% while increasing computational effort by 146%. The Midpoint+R approach, signifi-
cantly improves the output decoupling with the least computational overhead. The Locality
heuristic, on the other hand, more than doubles computational overhead while providing no
significant improvement in rigidity. We also explored combining these rigidity-decreasing
heuristics, and while the increase in computational effort tended to be additive (the Local-
ity+R approach increases effort by 172%), the decrease in rigidity did not. In fact, no other
heuristics that we tried led to a statistically significant decrease in rigidity compared to
the original Midpoint+R approach in the cases we investigated. The Locality+R approach
came the closest, decreasing rigidity by 49.9% in expectation.

In our second experiment, we used the Factory Scheduling Problem benchmark with
parameter settings A = 16 and 7' = {80, 320,560} and ensured that each problem was set
with a tight makespan; these results appear in the right-hand side of Table 2. Interestingly,
as the number of tasks increases, the level of rigidity of the input MaSTN decreases, while
the rigidity of the calculated decouplings plateaus. This is because adding tasks does not
directly correlate to adding interdependencies: only if the tasks happen to be naturally
dependent on one another and assigned to different agents is the level of coupling affected. So
setting a tight makespan on a set of tasks has the effect of making the critical path through
the workflow rigid, but leaves many other workflow paths flexible. However, decoupling
effectively introduces many additional interim makespan deadlines, which can lead to many
rigid paths in the workflow. Owverall, the increased structure of these problems led to
starker differences between approaches. Computing a temporal decoupling results in a 3-
fold increase in rigidity over the input MaSTP regardless of the decoupling approached
used. Once again, including the relaxation phase decreased rigidity, by an additional 20.2%
margin when using the Midpoint heuristic and by a 21.5% margin when using the Locality
heuristic. The differences in flexibility between the outputs of the Midpoint(+R) and the
computationally more expensive Locality(+R) approaches are insignificant.

This is far from conclusive evidence that there are no other variable assignment heuristics
that would outperform either the default midpoint or locality heuristics. It does, however,
point to the robustness of the MaTDR algorithm at recovering flexible decouplings. While
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there was not a significant difference between the Locality and Midpoint heuristics, nor the
Locality+R and Minimality+R approaches, the addition of the relaxation led to a significant
improvement in both cases. The fact that the MaTDR algorithm alone increases rigidity
less than any other strategy can be attributed to both the structure of an MaSTP and how
rigidity is measured. The MaTDR algorithm improves the distribution of flexibility to the
shared timepoints reactively, instead of proactively trying to guess good values. As the
MaTD algorithm tightens bounds, the general triangulated graph structure formed by the
elimination order branches out the impact of this tightening. For instance, when a timepoint
is assigned, it defers flexibility to its possibly many neighboring timepoints, and then during
RELAXATION our algorithm recovers flexibility for each these neighboring timepoints before
recovering flexibility for the originally assigned timepoint.

Notice from Table 2 that the original TDP approach increases the rigidity the least,
averaging 20.6% less rigidity than our Midpoint+R approach for the randomly generated
problem set and 15.9% for the factory scheduling problems. However, this lower rigidity
comes at a significant computational cost—the original TDP approach incurs, in expecta-
tion, over 10,000 tzmes more computational effort than the Midpoint+R approach. Further,
the original TDP approach has access to edge information involving any pair of timepoints
in the entire, centralized MaSTN, clobbering all privacy, while the MaTDR makes its heuris-
tic decoupling decisions with much more limited information, maintaining greater levels of
agent privacy. While in some scheduling environments the costs of centralization (e.g., pri-
vacy) alone would discourage using the original TDP approach, in others the computational
effort may be prohibitive if constraints arise faster than the centralized TDP algorithm can
calculate a temporal decoupling. Further, differences in rigidity between decoupling ap-
proaches may become mitigated in scheduling problems where many external constraints
enforce synchronization (e.g., Ann’s and Bill’s recreational start time). Because synchro-
nization requires fully assigning timepoints in order to decouple, there may be no flexibility
to recover, which makes our efficient, assignment-based MaTD algorithm the better choice.

5.3.3 SUMMARY

Our MaTDR algorithm combines the reasoning of the DAPPC algorithm with a decoupling
procedure that first assigns, then relaxes, shared timepoints in a way that leads to a minimal
decoupling for an MaSTP. We showed that while this algorithm has the same complexity
as the original DAPPC algorithm, it reduces solve time in expectation. Overall, on the
space of problems that we investigated, the Midpoint+R approach, in expectation, outputs
a high-quality temporal decoupling that approaches the quality (within 20.6% for random
problems and 15.9% for factory scheduling problems) of the state-of-the-art centralized
approach (Hunsberger, 2002), in a distributed, privacy-maintaining manner and multiple
orders-of-magnitude faster than this previous centralized approach.

6. Related Work

In this section, we summarize related approaches and highlight applications that could
benefit from using our MaSTP formulation and algorithms.
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6.1 Simple Temporal Problem with Uncertainty

A Simple Temporal Problem with Uncertainty (STPU) (Vidal & Ghallab, 1996; Vidal
& Fargier, 1999) partitions the set of constraints of an STP into a set of requirement links
and a set of contingent links. Requirement and contingent are both temporal difference
constraints, as defined in Section 2.1. The difference is that a requirement link can be
assigned by the agent whereas a contingent link is exogenously assigned outside of the control
of the agent to some value f3;; € [—bj;, bij]. An STPU is checked not only for consistency, but
also for various classes of controllability, including strong, weak, and dynamic variants
(Vidal, 2000; Morris, Muscettola, & Vidal, 2001; Morris & Muscettola, 2005; Lau, Li, &
Yap, 2006; Hunsberger, 2009). Whereas a consistent STP is one where there exist schedules
that satisfy all constraints, a controllable STPU is one where there exist satisfying schedules
regardless of how the contingent links are assigned. Typical strategies for establishing or
maintaining controllability include preemptively constraining requirement timepoints so
that the remaining values are consistent with all possible contingencies. Our work does not
explicitly differentiate between which constraints can be exogenously updated and which
cannot. We instead use the space of all solutions to hedge against dynamic constraints.
However, as a nice parallel to the STPU literature, our MaTD algorithm can be viewed as a
negotiation in which agents preemptively add new decoupling constraints to control against
the uncertainty and contingencies introduced by their interactions with other agents.

6.2 Applications of Multiagent Scheduling

Temporal constraint networks represent spaces of feasible schedules as compact intervals of
time that can be calculated efficiently. For this reason, a temporal network naturally lends
itself to online plan monitoring and dispatchable execution—an online approach whereby a
dispatcher uses the flexible times representation to efficiently adapt to scheduling upheavals
by introducing new constraints. The plan monitor can flag when a current schedule has
become infeasible, and a dispatcher can notify agents of the time it assigns to variables
immediately prior to execution (Muscettola, Morris, & Tsamardinos, 1998). Another con-
tribution of our work is to show that these advantages extend to distributed, multiagent
temporal constraint networks, while also introducing a level of independence that agents
can exploit in many ways. Properties of temporal networks such as minimality and de-
composability have proven essential in representing the solution space for many centralized
applications such as project scheduling (Cesta, Oddi, & Smith, 2002), medical informatics
(Anselma, Terenziani, Montani, & Bottrighi, 2006), air traffic control (Buzing & Witteveen,
2004), and spacecraft control (Fukunaga, Rabideau, Chien, & Yan, 1997). Unfortunately,
multiagent scheduling applications (Laborie & Ghallab, 1995; Bresina et al., 2005; Castillo
et al., 2006; Smith et al., 2007; Barbulescu et al., 2010) wishing to exploit these properties
have previously relied on either a centralized temporal network representation or, if inde-
pendence was also needed, completely disjoint, separate agent networks. We now highlight
a few specific example applications that may benefit from the work described in this paper.

The approach originally described by Smith et al. (2007) and extended by Barbulescu
et al. (2010) exploits the flexibility of STNs in a distributed framework. The general frame-
work of the problems they solve contains models of uncertainty over both the durations
and utilities of different activities. Using a greedy heuristic, their scheduler selects a set of
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activities that would maximize agent utility, and extracts duration bounds from the distri-
bution of possible durations for each activity, thus creating an STP for each local agent.
Each agent captures the current state of its local problem in the form of an STN representa-
tion of its local solution space, which the agent uses to help hedge against uncertainty. An
agent maintains the current state of the problem as new constraints arise by using efficient,
incremental STN consistency algorithms (e.g., Cesta & Oddi, 1996; Planken, de Weerdt, &
Yorke-Smith, 2010b). Each agent maintains its local STN problem representation until an
improved replacement STN is identified by the scheduler mechanism. This efficient state-
maintenance strategy frees agents to spend a greater portion of time exploring alternative
allocations and schedulings of activities between agents. Barbulescu et al.’s approach divides
the problem into separate, localized STP instances, requiring a distributed state manager
to react to and communicate local scheduling changes that may affect other agents. To
deal with the challenge of coordination, Barbulescu et al. establish an acceptable time, §,
within which interdependent activities between agents are considered synchronized. As long
as an agent can execute its activities within the prescribed Js, it can assume consistency
with other agents. The risk of inconsistencies between agents is mitigated by (i) restricting
synchronization scheduling to a limited time horizon and (ii) allowing agents to abandon a
synchronization as soon as it is determined to be unrealizable.

Shah and Williams (2008), Shah, Conrad, and Williams (2009) and Conrad and Williams
(2011) generalize this idea to multiagent, disjunctive scheduling problems by calculating dis-
patchable representations. Shah and Williams (2008) recognize that many of the disjunc-
tive scheduling possibilities contain significant redundancy, and so gain representational
efficiency by reusing the redundant portions of existing solution representations as much as
possible. The algorithm propagates each disjunct using a recursive, incremental constraint
compilation technique called dynamic back propagation, keeping a list of the implications
of the disjunct to the temporal network. This centralized compilation leads to not only a
much more compact representation than the previous approach (Tsamardinos, Pollack, &
Ganchev, 2001), but also faster plan monitoring by avoiding the need to simultaneously and
separately update each disparate STP.

Each of these domains offer examples of work that could benefit by putting our approach
into practice. Representing the joint solution space as a multiagent temporal network could
instead offer an agent a more complete view of available scheduling possibilities as well as
an increased understanding of how its problem impacts (or is impacted by) other agents’
problems. Further, directly representing and reasoning over the interacting scheduling prob-
lem of multiple agents also eliminates the need for agents to execute separate threads of
execution to monitor and communicate state changes. Finally, directly implementing a
multiagent temporal network allows agents to more flexibly and directly strike a trade-off
between representing the complete joint solution space and internalizing decoupling con-
straints in a just-in-time manner (e.g., using the time-horizon concept of Barbulescu et al.,
2010), rather than having to rely on additional mechanisms manage and coordinate state.

6.3 Distributed Finite-Domain Constraint Reasoning

The Distributed Constraint Satisfaction Problem (DCSP) is a distributed constraint-based
problem formulation where all variables have a discrete, finite domain, rather than temporal,
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continuous domain. Two seminal algorithms for solving the DCSP are the Asynchronous
Backtracking (ABT) and the Asynchronous Weak-Commitment (AWC) search algorithms
(Yokoo, Durfee, Ishida, & Kuwabara, 1998). ABT, AWC, and their variants are algorithms
based on asynchronous variable assignment, and use message passing of no-goods to resolve
conflicts. Armstrong and Durfee (1997), Hirayama, Yokoo, and Sycara (2004), and Silaghi
and Faltings (2005) provide variants of these algorithms that perform more intelligent pri-
oritization of agents, order local agent variables dynamically, and aggregate exchanges of
information for agents with complex local problems. However, approaches based on assign-
ment and no-good learning may be less applicable to continuous-domain, constraint-based
scheduling problems, where typical strategies focus on maintaining consistent sets of solu-
tions using inference. Mailler and Lesser’s Asynchronous Partial Overlay (APO) algorithm
(Mailler & Lesser, 2006) deals with inconsistencies between agents through mediation, which
over time centralizes the view of the problem, and thus may conflict with the privacy goals of
our work. Asynchronous Forward Checking (AFC), proposed and evaluated by Meisels and
Zivan (2007), provides mechanisms for asynchronously increasing consistency across agents;
however the pay-off of this algorithm—avoiding expensive backtracking operations—is not
a challenge faced by our MaSTP algorithms.

A Distributed Constraint Optimization Problem (DCOP) is a generalization of the
DCSP with more general utility or cost functions (soft constraints) that assign a utility
or cost to every possible combination of assignments to a particular subset of variables, re-
placing the set of hard constraints. A DCSP can be translated into a DCOP by converting
constraints into cost functions with infinite cost for inconsistent assignments. As before,
each utility function is known by at least one agent, and a DCOP is solved by finding the
assignment of values to variables that maximizes total utility (or minimizes total cost).
ADOPT (Modi, Shen, Tambe, & Yokoo, 2005) and BnB-ADOPT (Yeoh, Felner, & Koenig,
2010) are both decentralized, complete search algorithms for solving a DCOP using best-
first and branch-and-bound depth-first principles respectively. The OptAPO algorithm is
an optimization variant of the APO algorithm by Mailler and Lesser (2004). ADOPT and
OptAPO are generalizations of AWC and APO respectively, though in each case, instead
of terminating after the first feasible assignment of values to variables, agents must exhaust
the entire search space to guarantee the assignment they return is the optimal one. The
DPOP algorithm (Petcu & Faltings, 2005), which is also a distributed implementation of
the more general bucket-elimination algorithm for solving DCOPs, is probably the most
similar to our approach. While DPOP requires only a linear number of messages to solve
a DCOP, it suffers from exponentially (in the induced width of the constraint graph) large
message sizes. Our approach, on the other hand, can exploit the relatively simple temporal
constraints to compactly encode the impact of eliminated variables using binary constraints.

6.4 Multiagent Planning

The term planning encompasses many specific problem domains including classical (Fikes
& Nilsson, 1972), Hierarchical Task Networks (Erol, Hendler, & Nau, 1994), and MDP-
based planning (Bellman, 1966; Sutton & Barto, 1998). At a high level, planning involves
developing policies or (partially-ordered) sequences of actions that (provably or probabilis-
tically) evolve the state of the world in a way that achieves a set of goals or optimizes
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some objective function. For many types of planning problems, the plan or policy must
also consider types of uncertainty not typically found in scheduling (e.g., uncertainty over
observations, effects of actions, etc.). In comparison, in our work, the events that are to
be scheduled have already been determined and are taken as input. The output, instead
of some sort of general policy or (partial) sequence of actions, is a specification of how
times can be assigned to timepoint variables to satisfy the temporal constraints, where all
such schedules are considered equal. Planning and scheduling, while interrelated (Myers
& Smith, 1999; Garrido & Barber, 2001; Halsey, Long, & Fox, 2004), are often treated
as separate subproblems (e.g., McVey, Atkins, Durfee, & Shin, 1997). Smith, Frank, and
Jénsson (2000), who give a more complete comparison of planning and scheduling, suggest
“the difference [between planning and scheduling] is a subtle one: scheduling problems only
involve a small, fixed set of choices, while planning problems often involve cascading sets of
choices that interact in complex ways”.

There are many planning approaches, particularly multiagent planning (for a more
complete introduction, see desJardins, Durfee, Ortiz Jr, & Wolverton, 1999; de Weerdt
& Clement, 2009) or decentralized planning (e.g., desJardins & Wolverton, 1999; Bern-
stein, Zilberstein, & Immerman, 2000) that relate to and inspire our approach for solving
multiagent scheduling problems. First, there is long history of exploiting loosely-coupled
structure in multiagent planning; Witwicki and Durfee (2010) offer one recent example.
Second, a main challenge in multiagent planning—how to interleave local planning and in-
teragent coordination—is also apt for multiagent scheduling problems. In planning, there
have been approaches where agents develop local plans and then work to integrate the plans
(e.g., Georgeff, 1983), approaches that work out interdependencies between agents first and
then build local plans to fit these commitments (e.g., ter Mors, Valk, & Witteveen, 2004),
and approaches that blur this dichotomy by interleaving planning and coordination (e.g.,
Clement, Durfee, & Barrett, 2007 does this by establishing multiple levels of abstraction).
Third, both planning and scheduling involve ordering events and checking for cycles (to
ensure goals/conditions are not clobbered in planning and to ensure consistency in schedul-
ing), which is particularly challenging when cycles are potentially distributed across multiple
agents (Cox, Durfee, & Bartold, 2005).

6.5 Resource and Task Allocation Problems

Allocating tasks or resources to multiple agents has been studied in a variety of settings (e.g.,
Goldberg, Cicirello, Dias, Simmons, Smith, & Stentz, 2003; Nair, Ito, Tambe, & Marsella,
2002; Sandholm, 1993; Simmons, Apfelbaum, Fox, Goldman, Haigh, Musliner, Pelican,
& Thrun, 2000; Wellman, Walsh, Wurman, & MacKie-Mason, 2001; Zlot & Stentz, 2006).
Typically these problems involve either assigning a set of tasks to a limited number of agents
that can perform them or, alternatively, assigning scarce resources to agents that require
these resources. A common approach for handling such task allocation is a market-based
approach (e.g., Nair et al., 2002), where agents place bids on tasks (or subsets of tasks
in combinatorial auctions) according to their calculated costs for performing the tasks,
with tasks then being assigned to the lowest bidder. Other market-based approaches allow
agents to locally exchange tasks in order to quickly respond to a dynamic environment (e.g.,
Sandholm, 1993). While more recent approaches (Goldberg et al., 2003; Zlot & Stentz, 2006)
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allow agents to negotiate at various levels of task abstraction/decomposition, the primary
temporal reasoning occurs within an agent, which uses scheduling information to estimate
costs for its bid. Similarly, before bidding on them, agents can append temporal constraints
to tasks, such as time-windows, to help capture/enforce relevant precedence constraints
between tasks of different agents.

Our work assumes that the task and resource allocation problems have already been
solved, or, if necessary, constraints are in place to prevent concurrent, overlapping use
of a resource or duplication of a redundant activity. Additionally, whereas task/resource
allocation is cast as an assignment problem, our work deals largely with reasoning over
bounds so as to support flexible times representations. Finally as noted in greater detail by
Zlot and Stentz (2006), while optimal, centralized approaches for solving this problem exist,
the NP-hard nature of the problem, coupled with the uncertain or dynamic environment,
leads to most recent approaches being both distributed as well as heuristic or approximate
in nature. In contrast, our work assumes deterministic and complete approaches, but does
not explicitly model the relative costs or values of various schedules. Instead, our agents
provide their users with the autonomy to make their own cost/value judgments, and in
turn, provide advice about the implications of their scheduling decisions.

6.6 Operations Research

Our MaSTP representations are capable of representing a particular class of scheduling
problems. The Operations Research (OR) community is also interested in solving (often
NP-hard) scheduling problems. In her overview comparison of the two fields, Gomes (2000,
2001) classifies OR problems as optimization problems, where the utility function tends to
play an important role. Additionally, Gomes notes OR tends to represent problems using
mathematical modeling languages and linear and non-linear inequalities, and uses tools
such as linear programming, mixed-integer linear programming, and non-linear models.
Typically, OR approaches gain traction by exploiting problem structuring. For example
approaches such as timetabling or edge-finding (Laborie, 2003) are both OR techniques
for tightening the bounds over when possible activities can occur. While a full review of
the many OR models (e.g., Traveling Salesperson Problem, Job Shop Scheduling Problem,
Resource Constrained Project Scheduling Problem, Timetabling, etc.) is beyond the scope
of this paper, it is worth pointing out that synergy between the AI scheduling and OR
communities is growing (Baptiste, Le Pape, & Nuijten, 1995; Bartdk, 1999; Laborie, 2003;
Baptiste, Laborie, Le Pape, & Nuijten, 2006; Oddi, Rasconi, & Cesta, 2010).

7. Conclusion

The work we presented in this paper builds foundational algorithms for scheduling agents
that assist people in managing their activities, despite distributed information, implicit
constraints, costs in sharing information among agents (e.g., delays, privacy, autonomy,
etc.), and the possibility of new constraints dynamically arising. Agents flexibly combine
shared reasoning about interactions between their schedules with independent reasoning
about their local problems. They do so by externalizing constraints that compactly sum-
marize how their local subproblems affect each other, and internalizing new local constraints
that decouple their problems from one another. This approach is most advantageous for
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problems where interactions between the agents are sparse compared to the complexity of
agents’ individual scheduling problems, where our algorithms achieve significant computa-
tional speedup over the current art.

More particularly, we contributed a formal definition of the Multiagent Simple Tem-
poral Problem and analyzed the benefits that a distributed representation affords. We
presented the DAPPC algorithm, which is the first distributed algorithm for calculating
a decentralized representation of the complete space of joint solutions, and proved that it
correctly establishes partial-path consistency with a worst-case runtime complexity that is
equal to the previous state-of-the-art. We empirically demonstrated that DAPPC scales
to problems containing more agents better than its state-of-the-art centralized counterpart,
and exhibits a steady margin of speedup. Exactly how effectively it load-balances compu-
tational effort depends on the number of external constraints coupling agents’ problems,
where DAPPC achieves up to a 22-fold reduction in nonconcurrent computational effort
over APPC for problems with 25 agents in the problems we studied. Additionally, we for-
mally defined the Multiagent Temporal Decoupling Problem along with the first distributed
algorithm for solving it. We proved that the MaTD algorithm is correct, and demonstrated
both analytically and empirically that it calculates a temporal decoupling upwards of four
orders-of-magnitude faster than previous approaches, exploiting sparse structure and paral-
lelism when it exists. Additionally, we introduced the RELAXATION algorithm for relaxing
the bounds of existing decoupling constraints to form a minimal temporal decoupling, and
empirically showed that this algorithm can decrease rigidity by upwards of 50% (within 15-
21% of the state-of-the-art centralized approach) while increasing computational effort by
as little as 20% in the problems we studied. Overall, we have shown that the combination
of the MaTD and MaTDR algorithms can calculate a temporal decoupling faster than the
DAPPC algorithm, and four orders-of-magnitude faster than the previous state-of-the-art
centralized TDP algorithm.

This work leads to many interesting ongoing and future research directions. First, the
use of an MaSTN to monitor plan execution and dispatch scheduling advice to users in
a distributed manner (as was done for centralized dispatching in, e.g., Drake, see Conrad
& Williams, 2011) will rely on an ability to efficiently maintain MaSTNs (Boerkoel et al.,
2013) and a on comprehensive empirical understanding of the inherent trade-offs between
the costs of maintaining PPC wversus the loss of flexibility in temporal decouplings. Second,
the MaSTP formulation could be adapted to include models of uncertainty or utility, as
it has for the centralized STP (Rossi, Venable, & Yorke-Smith, 2006). Optimally solving
the temporal decoupling problem for general models of utility is an NP-hard problem,
even in the centralized case (Planken, de Weerdt, & Witteveen, 2010a). Thus, designing
mechanisms that can augment our distributed temporal decoupling algorithm and encourage
agents to solve the MaTDP in both a distributed and globally optimal (rather than just
locally minimal) manner is an open challenge that spans both multiagent scheduling and
algorithmic game theory. Finally, the ideas presented here for MaSTP can be extended
to more-general, disjunctive scheduling problems (Boerkoel & Durfee, 2012, 2013). The
combinatorics of disjunctive problems leads to significant challenges—finding solutions is
NP-hard, and the structure of the underlying temporal network, which for the inherently
binary MaSTP is known a priori, can become conflated or tangled by the combinatorial
number of possible disjunctive choices.
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