
Distributed Algorithms for Incrementally Maintaining
Multiagent Simple Temporal Networks

James C. Boerkoel Jr.1∗ Léon R. Planken2∗ Ronald J. Wilcox1 Julie A. Shah1
1 Computer Science and AI Laboratory, Massachusetts Institute of Technology, USA

2 Faculty of EEMCS, Delft University of Technology, The Netherlands
{boerkoel, julie a shah}@csail.mit.edu l.r.planken@tudelft.nl rjwilcox@mit.edu

Abstract

When multiple agents want to maintain temporal informa-
tion, they can employ a Multiagent Simple Temporal Net-
work (MaSTN). Recent work has shown that the constraints
in a MaSTN can be efficiently propagated by enforcing partial
path consistency (PPC) with a distributed algorithm. How-
ever, new temporal constraints may arise continually due to
ongoing plan construction or execution, the decisions of other
agents, and other exogenous events. For these new constraints,
propagation is again required to re-establish PPC. Because
the affected part of the network may be small, one typically
wants to exploit the similarities between the new and pre-
vious version of the MaSTN. To this end, we propose two
new distributed algorithms for incrementally maintaining PPC.
The first is inspired by4STP, the seminal PPC algorithm for
STNs; the second is a distributed version of IPPC, which rep-
resents the current state of the art for incrementally enforcing
PPC in a centralized setting. The worst-case time performance
of these algorithms is similar to their centralized counterparts.
We empirically compare our distributed algorithms, analyzing
their performance under various assumptions, and demonstrate
significant speedup over their centralized counterparts.

Introduction
Simple Temporal Networks (STNs) offer a way to efficiently
maintain sets of temporal constraints. In many planning
and scheduling domains, agents must coordinate with others
while efficiently managing their own temporal constraints. In-
deed, STNs have played a central role in many deployed plan-
ning systems with applications in the coordination of military
and disaster relief efforts, Mars rover missions, health care op-
erations, and manufacturing tasks (Laborie and Ghallab 1995;
Bresina et al. 2005; Castillo et al. 2006; Barbulescu et al.
2010; Wilcox and Shah 2012).

The Multiagent STN (MaSTN; Boerkoel and Durfee 2013)
enables agents, which were previously forced to use a single
centralized STN, to capture their interacting temporal con-
straints in a decentralized manner. This representation allows

∗These authors are listed in alphabetical order and contributed
equally to this work during the European Extended Lab Visit Pro-
gram funded by the NSF. A version of this work was presented at
the 2012 Autonomous Robots and Multirobot Systems Workshop
(ARMS 2012).
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

each agent to maintain its local portion largely independently
of other agents, leading to increased concurrency and pri-
vacy. Partial path consistency (PPC; Xu and Choueiry 2003;
Planken, De Weerdt, and Van der Krogt 2008) provides a
way for efficiently propagating temporal constraints while
exploiting network sparsity, e.g., the loosely-coupled nature
of an MaSTN. However, due to ongoing plan construction or
execution, the decisions of other agents, or other exogenously
determined events, new constraints can arise that invalidate
partial path consistency. Recent work provides a (central-
ized) algorithm called IPPC for enforcing PPC incrementally,
by exploiting the similarities between the new and previous
versions of the temporal network (Planken, De Weerdt, and
Yorke-Smith 2010).

In this paper, we apply insights from the IPPC algorithm
to the distributed MaSTN representation to develop two new
distributed algorithms for incrementally enforcing PPC. The
first algorithm is inspired by4STP (Xu and Choueiry 2003),
the seminal algorithm for enforcing PPC on STNs, and the
second is a distributed version of the state-of-the-art central-
ized algorithm IPPC. They attempt to optimize the concur-
rent runtime of algorithms using two different strategies—the
first attempts to maximize agent utilization, while the sec-
ond attempts to minimize total effort. The worst-case time
performance of these algorithms is similar to their central-
ized counterparts. However, based on key insights about the
MaSTN, we demonstrate that distributed, concurrent com-
putation is possible. Finally, we empirically compare our
distributed algorithms, analyzing which algorithm performs
best under various assumptions, and demonstrate significant
speedup over their centralized counterparts.

Background
A Simple Temporal Problem (STP) (Dechter, Meiri, and Pearl
1991) instance consists of a set X = {x1, . . . , xn} of n time-
point variables representing events, and a set C of m con-
straints over pairs of time points, bounding the temporal dif-
ference between events. Every constraint ci→j ∈ C defines a
value bi→j ∈ R ∪ {∞} corresponding to an upper bound on
this difference, and represents an inequality xj − xi ≤ bi→j .
Two constraints ci→j and cj→i can be combined into a sin-
gle constraint interval xj − xi ∈ [−bj→i, bi→j], giving both
upper and lower bounds. An unspecified constraint is equiva-
lent to a constraint with an infinite weight; therefore, if ci→j

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

11

exists and cj→i does not, we have xj − xi ∈ (−∞, bi→j].
Each instance of the STP has a natural graph representa-

tion called a Simple Temporal Network (STN). Because our
algorithms can be stated more naturally using this representa-
tion, we use it throughout the remainder of this paper. In an
STN S = 〈V,E〉, each temporal variable is represented by a
vertex vi ∈ V , and each constraint is represented by an edge
{vi, vj} ∈ E between vertices vi and vj with two associated
weights, wi→j and wj→i, which are initially equal to bi→j
and bj→i, respectively. The continuous domain of each vari-
able vi ∈ V is defined as a bound [e, l] over the difference
vi − z, where z is a special zero time point representing the
start of time and e and l represent vi’s earliest and latest
times, respectively. To reduce clutter when depicting an STN,
we often omit z and instead represent these constraints as
unary ones, i.e., self-loops labeled by clock times.

The Multiagent Simple Temporal Network (Boerkoel and
Durfee 2013) or MaSTN is informally composed of N sub-
STNs, one for each agent A in a set {1, . . . , N}, and a set
of edges EX that establish relations between the sub-STNs
of different agents. V AL is defined as agent A’s set of lo-
cal vertices, which corresponds to all time-point variables
assignable by agentA. EAL is defined as agentA’s set of local
edges, where a local edge {vi, vj} ∈ EAL connects two local
vertices vi, vj ∈ V AL . The sets V AL partition the set of all non-
zero time points. Together, V AL and EAL form agent A’s local
sub-STN, SAL = 〈V AL , EAL 〉. Each external edge in the setEX
connects sub-STNs of different agents and is incident to two
vertices that are local to different agents, vi ∈ V AL and vj ∈
V BL , for A 6= B. Each agent A is aware of EAX , the set of
external edges that involve exactly one of A’s local vertices;
formally: EAX =

{
{vi, vj} ∈ EX | vi ∈ V AL ∧ vj 6∈ V AL

}
.

Apart from its local vertices, agent A also knows about V AX ,
the set of non-local vertices involved in EAX . In summary,
agentA is aware of its known time points, V A = {V AL ∪V AX },
and its known constraints, EA = {EAL ∪ EAX}. The joint
MaSTN S is then formally defined as the set of sub-STNs
Si = 〈V i, Ei〉 for i ∈ {1, . . . , N}.

Example. Consider scheduling the activities of three
agents—two mobile manufacturing robots (A,B) and a hu-
man quality control inspector (H)—in a manufacturing envi-
ronment, displayed as STNs in the top, middle, and bottom
rows of Figure 1, respectively. The robots must perform three
manufacturing tasks D, F , and G, e.g., welding or torquing
parts into place. The human inspector is responsible both for
an inspection task I , and for conducting routine maintenance
on robot B: task M . In this problem, each agent has various
local constraints over when activities can occur, including
task duration and transition times between tasks. For instance,
the start and end events of task D are represented in Figure 1
as the vertices DA

S and DA
E , respectively; the constraint that

D requires between 40 and 70 minutes is represented as an
edge from DA

S to DA
E with label [40, 70].

In addition, there are external constraints, represented as
dashed lines, that establish relationships between the agents.
In our example, while performing task D, robot A obstructs
the route to the location where the maintenanceM of robotB

DA
S DA

E FAS FAE

GBS GBE MB
S MB

E

IHS IHE MH
S MH

E

[40,70]

[1:00,6:00]

[20,∞)

[20,∞)

[20,∞)

[1:00,6:00]

[150,240]

[1:00,6:00] [1:00,6:00]

[50,80]

[1:00,6:00]

[120,155]

[1:00,6:00]

[70,110]

[0,0]

[1:00,6:00]

[0,0]

[1:00,6:00]

[30,50]

[1:00,6:00]

[70,95]

[1:00,6:00]

[80,120]

[1:00,6:00] [1:00,6:00]

Figure 1: The interacting schedules of two manufacturing
robots and a human inspector depicted in an STN.

must take place; thus, robot A must be allowed 20 seconds
after the completion of task D to clear the way for robot B
and the inspector. Further, in the inspector’s and robot B’s
local representations of M , the start and end times must
coincide exactly. RobotA’s set of known time points includes
the vertices in the top row of Figure 1 as well as GBE , and IHE ;
and its set of known edges includes all edges between these
time points.

Solving the STP. Solving an STP is often equated with de-
termining its set of solutions: those assignments of values to
the variables that are consistent with all constraints. Since the
size of a naı̈ve representation of this solution set is prohibitive,
we often instead compute the equivalent minimal networkM,
where each constraint captures the exact set of temporal dif-
ferences that will lead to solutions.M allows constant-time
answering of queries such as (i) whether the information
represented by the STP is consistent; (ii) finding all possible
times at which some event xi could occur; and (iii) finding
the minimum and maximum temporal difference between
two events xi and xj implied by the set of constraints. For
the STP, the minimal network can be found by enforcing path
consistency, or equivalently by computing all-pairs shortest
paths on the associated STN, which yields a complete graph
and requires O

(
n3

)
, O

(
n2 log n+ nm

)
or O

(
n2wd

)
time

depending on the algorithm (Planken, De Weerdt, and Van der
Krogt 2011), where n = |V |, m = |E|, and wd is described
below.

Instead of enforcing PC on an STN S, one can opt to en-
force partial path consistency (PPC; Bliek and Sam-Haroud
1999) to yield a potentially much sparser chordal or triangu-
lated networkM∗, where every cycle of length four or more
has an edge joining two non-adjacent vertices in the cycle.
As inM, all edges {vi, vj} inM∗ are labeled by the lengths
wi→j and wj→i of the shortest paths from i to j and from j
to i, respectively. Thus,M∗ sharesM’s properties of equiva-
lence to S , constant-time resolution of the queries mentioned,
and efficient, backtrack-free extraction of any solution. The
main drawbacks of a PPC network as compared to its PC
counterpart are that (i) it cannot directly resolve queries in-
volving arbitrary pairs of variables (i.e., those not connected
in the chordal graph), and (ii) updates to the network cannot
be directly propagated through the fully-connected network,
but rather require traversing the chordal network in a particu-
lar way, as we describe later. The number of edges inM∗,

12

denoted by mc, is bounded by O (nwd). Here, wd is the
graph width induced by an ordering d of the vertices. P3C,
regarded as the current state of the art for solving an STN
non-incrementally, tightens triangles in a principled man-
ner to establish PPC in O

(
nw2

d

)
time (Planken, De Weerdt,

and Van der Krogt 2008). Other recent algorithms similarly
exploit network structure to propagate constraints in sparse
temporal networks (e.g., Xu and Choueiry 2003; Bui, Tyson,
and Yorke-Smith 2008; Shah and Williams 2007).
Distributed and Incremental Approaches. Boerkoel and
Durfee (2010) present DP3C, a distributed version of the P3C
algorithm, in which agents independently process as much
of their local problem as possible and coordinate to establish
PPC on the external portions of the MaSTN. While DP3C
has the same worst-case time complexity as P3C, Boerkoel
and Durfee show that due to concurrent execution, DP3C
achieves significant speedup over P3C, especially when the
relative number of external constraints is small.

The incremental partial path consistency algorithm (IPPC;
Planken, De Weerdt, and Yorke-Smith 2010) takes an already
PPC network and a constraint ca→b to be tightened (i.e., an
edge {va, vb} whose weight is to be lowered). It is based on
the idea that, in order to maintain PPC, the weights of edges
in a chordal graph only need to be updated if at least one of
the neighbors has an incident edge that is updated. It runs
in O (mc) and O (n∗cδc) time and O (mc) space. Here, n∗c
and δc are the number of endpoints of updated edges in the
chordal graph and the chordal graph’s degree, respectively.
Example Revisited. Figure 2 represents a PPC version of
the STN from Figure 1, where bounds (in black) have been
tightened to specify the exact set of feasible values, and three
inter-agent edges have been added between B and H to trian-
gulate the graph. Suppose, however, that the inspector finds
out that an unexpected event causes the minimum transition
time between her inspection and maintenance tasks to in-
crease from 70 to 80 minutes. In Figure 2, the results from
this update are depicted by striking out old bounds and re-
placing them by newly updated ones in red. As demonstrated,
only a small portion of the network (the red, double edges),
needs to be revisited to re-establish PPC.

Distributed Incremental4STP
Xu and Choueiry (2003) were the first to recognize that PPC
could be established on STNs. Their algorithm4STP forms
a queue of all triangles (any triplet of pairwise connected time-
point variables), establishes PC on each triangle in the queue,
and re-enqueues all triangles containing an updated edge.

The idea of creating an incremental, distributed version of
the4STP algorithm is relatively straightforward: partition
the set of all triangles in the MaSTN among agents and have
each agent independently maintain its own separate, local
triangle queue. To achieve distribution, any time an agent
updates an edge that is shared with some other agent(s), it
must communicate the update to them. The main tweak for
incrementalizing the algorithm is that each agent initializes
an empty local queue and enqueues triangles incident to each
updated edge (received from either “nature” or another agent,
or after making a scheduling decision itself). Agents con-

DA
S DA

E FAS FAE

GBS GBE MB
S MB

E

IHS IHE MH
S MH

E

[1:35,2:50] [2:15,3:20]

[40,70]

[1:00,1:40]

[20,110]

[20,60]
[45,110] [45,100]

[1:40,2:20]

[150,240]

[2:00,3:30] [4:30,6:00]

[50,80]

[1:00,1:50]

[120,155]

[120,155][25,85] [25,75]

[2:00,2:40]

[80,110]

[0,0] [80,110]

[4:00,4:40]

[0,0]

[5:20,6:00]

[30,50]

[1:35,3:00]

[70,95][80,95]

[2:15,3:30]

[80,110]

[4:00,4:40] [5:20,6:00]

Figure 2: Only a small portion (red) of the PPC network of
the example problem must be revised when the minimum
transition time is updated to 80 seconds.

tinue processing their queues of triangles and exchanging
messages until quiescence is reached. In this work, we in-
vestigate processing only one update at a time. However,
this approach could potentially process many asynchronous
updates concurrently, though there is no guarantee that the
set of asynchronously introduced updates will be collectively
self-consistent.

An important issue is how to partition responsibility for
maintaining and communicating triangle edge information
among agents. Fortunately, we can exploit the extant DP3C
algorithm to triangulate and establish PPC on the MaSTN
as a preprocessing step. This leads to a natural policy for
assigning the responsibility for each triangle to exactly one
agent—the agent that created or realized the triangle by be-
ing the first to eliminate one of its time points. For instance,
in Figure 2, triangle {GBE , IHE , z}1 is created when agent B
eliminates GBE , so under our policy agent B would be respon-
sible for making sure this triangle is self-consistent. Addition-
ally, because of the way agents construct a global elimination
order, triangles tend to be naturally load-balanced among
all agents, though privacy concerns dictate that an agent can
only assume responsibility for triangles that contain one of
its vertices. In our example, agentsA, B, and H are responsi-
ble for 6, 8, and 7 triangles respectively, where {GBE , IHE , z}
becomes B’s responsibility even though A, which has no
vertices involved, has fewer triangles.

We present pseudocode for the Distributed Incremental
4STP algorithm (DI4STP) as Algorithm 1. Initially, each
agent is assumed to know which triangles it is responsible for
and constructs its own empty, local queue. Then, agent iwaits
until it receives an update message, checks if this results in a
local update that is tighter than its current network2, and if so,
adds any local, incident triangles to its queue. Otherwise, the
agent processes a triangle on the queue by testing whether
each pair of edges implies a tighter weight for the third edge
or not. If the agent does in fact update the edge weight, it
adds all local incident triangles to its queue and sends the
update to all neighboring agents. Termination occurs when
the algorithm reaches quiescence. Asymptotically, DI4STP

1We list triangle vertices in elimination order to clarify which
agent is responsible for each triangle: the owner of the first vertex.

2We write x.update(y) as shorthand for x← min {x, y}.

13

Algorithm 1: Distributed Incremental4STP
Input: The triangles of agent i’s local PPC MaSTN
Output: An updated PPC MaSTN
Q4 ← new, empty queue of triangles
while Q4.size() > 0 or PENDINGEDGEUPDATES() do

while
(
w′j→i, w

′
i→j

)
←RECEIVEUPDATE() do

wi→j .update(w′i→j); wj→i.update(w′j→i)
if an edge weight changed then

Q4.ADDINCIDENTTRIANGLES({vi, vj})

{va, vb, vc} ← Q4.PEEK()
foreach permutation (i, j, k) of {va, vb, vc} do

wi→j .update(wi→k + wk→j)

foreach updated edge {vi, vj} do
Q4.ADDINCIDENTTRIANGLES({vi, vj})
foreach agent A s.t. {vi, vj} ∈ EA do

SENDUPDATE(A, (wj→i, wi→j))

Q4.REMOVE({va, vb, vc})
return Si

requires no more time to run than the original 4STP algo-
rithm: in the worst case, all triangles may be affected by an
update and belong to a single agent. However, since edge
weights only decrease, the DI4STP algorithm is guaranteed
to converge to a fixed point without oscillation and in a finite
number of steps. In practice, we expect that the asynchronous,
concurrent nature of DI4STP will lead to significantly better
performance.

Next, we discuss how DI4STP propagates the update
in Figure 2. The updated edge IHE − MH

S ∈ [80, 95],
leads to agent H placing two triangles, {IHE ,MH

S , z} and
{MH

S , G
B
E , I

H
E }, on its queue. Agent H’s processing of the

first of these triangles leads to the edge update IHE − z ∈
[2:15,3:20], which is communicated to agents A and B, who
share knowledge of the edge. This leads to the addition of
{DA

E , I
H
E , z} to A’s queue, {GBE , IHE , z} to B’s queue, and

{IHS , IHE , z} toH’s queue. Each agent proceeds to update the
next triangle on its queue, which in turn leads to edge updates
DA
E − IHE ∈ [45, 100] (by A) and GBE − IHE ∈ [25, 75] (inde-

pendently by both B and H). After these edge updates are
properly communicated and processed, agent A (whose tri-
angle {DA

E , G
B
E , I

H
E } leads to no new updates) and agent H

(which computes an edge update, IHS − z ∈ [1:35,2:50], that
is not incident to any other triangles), finish processing their
queues, which terminates the algorithm.

DI4STP has properties that lead to various computational
trade-offs. Non-local effects of an update are propagated
to other agents quickly, which allows each agent to start
working immediately, with the possibility of also terminating
earlier. If the effect of an update is only local in scope, an
agent naturally completes the update independently of the
others. If the update affects more than one agent, DI4STP
exploits the inherent load-balancing of triangles that occurs
as a result of distributed triangulation. The algorithm is asyn-
chronous, which allows agents to maximize independence

and autonomy in updating their local STNs and retain the
privacy properties achieved by DP3C . We thus expect that
this algorithm will do well at maximizing agent utilization
(and minimizing agent idle time). However the downside of
an agent that optimistically and immediately processes its
triangle queue is that it may do so using stale edge informa-
tion, requiring later reprocessing. Indeed, like the original
4STP algorithm, DI4STP may reprocess the same triangle
many times; in pathological cases, it may even require effort
quadratic in the number of triangles (Planken, De Weerdt, and
Van der Krogt 2008), though, as mentioned, it will always
converge. Next, we describe our Distributed IPPC algorithm
that attempts to address this downside by traversing the tem-
poral network in an explicitly principled order.

Distributed IPPC
DIPPC, our algorithm for distributed incremental partial
path consistency, builds on the centralized IPPC algo-
rithm (Planken, De Weerdt, and Van der Krogt 2011), which
tags every vertex v in an order found through Maximum Car-
dinality Search (MCS; Tarjan and Yannakakis 1984), yielding
an ordering of vertices in the chordal graph with minimum in-
duced width wd: a simplicial construction ordering. IPPC’s
main addition to MCS is that as each vertex v is visited, ar-
rays D↓a[v] and D↑b [v] are used to maintain, respectively, the
length of the shortest path to a and from b, where {a, b} is the
new constraint edge. The tag procedure uses these arrays to
update edge weights between v and each of previously tagged
neighbor u, checking if there is a shorter path from u to v via
both a and b.

For DIPPC, we further make use of a clique tree. For
every chordal graph, an equivalent clique tree representa-
tion can be found efficiently (in linear time) using the same
distributed triangulation preprocessing step as the DI4STP
algorithm. While both algorithms operate on the same under-
lying chordal graph, the DI4STP algorithm treats triangles
as first-class objects, whereas DIPPC treats cliques (the col-
lection of triangles formed by a fully-connected subgraph)
as first-class objects. Clique tree nodes have a one-to-one
correspondence to the maximal cliques in the chordal graph.
The clique tree representation, then, is an abstraction of the
underlying chordal constraint network, that is guaranteed to
be no larger than the original graph, whereas the triangle
graph used by DI4STP may require up to n3 space for dense
graphs.

The key innovation in our DIPPC algorithm is that,
whereas IPPC followed an MCS ordering, we instead ob-
serve that the algorithm is correct when following any sim-
plicial construction ordering starting from a tightened edge.
Thus, we can set the node whose associated clique contains
both endpoints of the tightened edge {a, b} as the root of the
clique tree. A traversal of the clique tree—where a parent
node is visited before any of its children—then corresponds
to a simplicial construction ordering of the chordal graph.
The tree structure of the clique tree allows propagation to
branch to other agents and so achieve concurrency.

Observation. For re-enforcing PPC, vertices can be tagged
in any order corresponding to a traversal of the clique tree,

14

α β γ

δ ε ζ η

θ ι κ

Figure 3: Clique tree representation of the example network.

starting at a clique containing the updated edge.

Consider again the example network from Figure 2 and
its associated clique tree included in Figure 3. Every clique
contains the temporal reference point z (used to reason about
absolute time). Notice there are ten maximal cliques, and due
to the implicit edge that all vertices share with z, all maximal
cliques are of size 3 or 4 as denoted by triangles or diamonds,
respectively. Each agent holds a copy of the part of the clique
tree that contains its own vertices and the adjacent clique tree
nodes. Furthermore, each clique is designated to be owned
by the agent who first eliminates a vertex in that clique, like
the triangles for DI4STP. In our example, the initial update
occurs in clique ι, which consists of vertices IHE , GBE , MH

S
and z. Clique ι thus serves as the clique tree’s root, and the
inspector’s agent, who is responsible for maintaining it, kicks
off DIPPC, presented as Algorithm 2.

While the careful bookkeeping—done through the LIVE
and PROP messages—makes the DIPPC algorithm appear
complex, the actual conceptual flow of network updates—
through the TAG messages and the MakeLive procedure—
follows the original IPPC closely. As in IPPC, shortest dis-
tances D↓a[v] and D↑b [v] are maintained for every vertex v
while propagating the change. Before every tightening, they
are reset to ∞. With this in mind, the high-level flow of
propagating our example update is as follows. When the time
points in the root clique ι are tagged, agents B and H update
their involved constraints to new values: GBE−IHE ∈ [25, 75]
and IHE − z ∈ [2:15, 3:20]. When clique ι is done, agent H
propagates the change to agents A and B, the respective own-
ers of ε and ζ . Note that the clique tree now decomposes into
two independent parts where propagation continues simulta-
neously. When DIPPC finds that a change cannot or need not
be propagated further (either because the current clique tree
node is a leaf or the propagation causes no changes in the
clique), it sends a PROP-DONE notification back up to that
clique node’s parent. This parent node in turn tells its parent
that it is done when all its children have indicated they are.
Thus, propagation is complete when a PROP-DONE notifica-
tion reaches the root from all its children—in this case, when
it reaches clique ι from ε and ζ.

Continuing the example propagation, B immediately re-
turns a PROP-DONE notification for ζ, whereas A tags DA

E ,
the remaining time point in ε, causing A and H to update
their inter-agent constraint to DA

E − IHE ∈ [45, 100]. Next,

the owners of α, β, δ and θ are sent a PROP message, but
propagation is required only for θ (by agent H). This leads
to the final edge update: IHS − z ∈ [1:35, 2:50]. All PROP-
DONE notifications bubble upwards to the root ι, after which
agent H concludes that propagation is complete.

Algorithm 2: DIPPC
Input: Edge {a, b} with new weight w′a→b
if w′a→b ≥ wa→b then return CONSISTENT
if w′a→b + wb→a < 0 then return INCONSISTENT
MakeLive(a, 0,∞)
MakeLive(b,∞, 0)
await LIVE-DONE for all LIVE sent
C ← FindCommonClique(a, b)
send PROP (C, {a, b}) to Owner(C)
await PROP-DONE for PROP (C, {a, b})

Before going into more implementation details of DIPPC,
we first discuss its relative strengths and weaknesses. We
start with the strengths it has in common with the DI4STP
algorithm. Like its counterpart, DIPPC exploits the natural
load-balancing of cliques among agents that results from dis-
tributed triangulation by DP3C . The privacy properties of
DP3C also extend to DIPPC and guarantee that if an update
is local in scope, it is processed independently of all other
agents. However, in contrast to DI4STP, a major disadvan-
tage of the DIPPC algorithm is that it is not as asynchronous.
Thus, the level of concurrency that DIPPC achieves is subject
to how quickly the clique tree structure branches across multi-
ple agents. The upside of this increased synchronicity is that
by visiting nodes using a simplicial construction ordering
like the IPPC algorithm, DIPPC will visit any given edge at
most once, minimizing the total effort of the system.
Algorithmic Details. Apart from the top-level message
PROP and notification PROP-DONE, the algorithm requires
two additional message-notification pairs forming a middle
and a lower layer. When a clique is activated, the agent re-
sponsible for that clique sends a TAG message to (the owners
of) new vertices in the clique, i.e., vertices that were not
present in any previously activated clique. This corresponds
exactly to the original IPPC algorithm: when a vertex v is
tagged, its owner can efficiently determine whether it is live
or dead: whether any edges incident on v must be changed
or not. When v is found to be live, its owner communicates
this to all agents connected to v by an external edge using a
message of type LIVE, which includes the distances D↓a[v]
and D↑b [v], like in the original IPPC algorithm. The LIVE
message, upon receipt, is immediately acknowledged with
a LIVE-DONE notification. Finally, once an agent has re-
ceived these notifications for all LIVE messages it has sent,
it informs the owner of the active clique with a TAG-DONE
notification that it is done. When all TAG messages have been
responded to in this fashion, propagation continues using
PROP messages to the clique node’s children in the tree.

Note that in all pseudocode, waiting for some number of
notifications to arrive does not mean that the process does
nothing at all. Instead, a counter is decremented every time

15

a notification of the appropriate type arrives while the agent
continues receiving and responding to messages and notifi-
cations of other types. As soon as the counter reaches zero,
operation of the procedure continues as described.

The MakeLive procedure, in short, iterates over each neigh-
bor v of a newly-live vertex u, and either updates the edge if
v is live or updates the distance values for v otherwise. It also
informs other agents that know about u that it is now live,
and maintains a live counter. This counter is used to keep
track of the number of live vertices in a clique. When a clique
is activated but contains fewer than two live vertices, prop-
agation immediately stops. Once again, a similar provision
was present in the original IPPC algorithm.

Procedure HandleMsg
Input: Incoming message m

switch type of m
case LIVE (u, du→a, db→u)

MakeLive(u, du→a, db→u)
send LIVE-DONE (u) to Owner(u)

case PROP (Ccur, Cold)
if LiveCount [Ccur] ≥ 2 then

forall u ∈ Ccur \ Cold do
send TAG (u) to Owner(u)

await TAG-DONE for all TAG sent
forall C ′ ∈ Adj (Ccur) \ {Cold} do

send PROP (C ′, Ccur) to Owner(C ′)

await PROP-DONE for all ACTIVATE sent
send PROP-DONE to Owner(Cold)

case TAG (ToTag)
forall u ∈ ToTag do

set state of u to tagged
forall {u, v} ∈ pending(u) do

wu→v.update(D↓a[u] + wa→b +D↑b [v])

wv→u.update(D↓a[v] + wa→b +D↑b [u])

if no changes then set state of u to dead

forall vertices u ∈ ToTag not marked dead do
MakeLive(u,D↓a[u], D

↑
b [u])

await LIVE-DONE for all LIVE sent
send TAG-DONE to originator of TAG message

Empirical Evaluation
We compare the performance of both new distributed algo-
rithms with the state-of-the-art centralized approach.
Experimental Setup. Our problems3 come from two
sources. The first is the BDH problem set, which uses
Boerkoel and Durfee’s (2011) multiagent adaptation of Huns-
berger’s (2002) original random STP generator. Each MaSTN
has N agents each with start time points and end time
points for 10 activities, which are subject to various dura-
tion, makespan, and other local constraints. In addition, each
MaSTN has X external contraints. We evaluate algorithms

Procedure MakeLive(u, du→a, db→u)
Input: Vertex u, distances du→a and db→u
set state of u to live
increment LiveCount [u]
D↓a[u]← du→a
D↑b [u]← db→u
forall v ∈ V such that {u, v} ∈ E do

if v has not yet been tagged then
D↓a[v].update(wv→u + du→a)

D↑b [v].update(db→u + wu→v)
if v is mine then pending(v).append({v, u})

else
wu→v.update(D↓a[u] + wa→b +D↑b [v])

wv→u.update(D↓a[v] + wa→b +D↑b [u])

if v ≺ u then increment LiveCount [v]
if u is mine but v is not, and Owner(v) has not yet
been informed then

send LIVE (u, du→a, db→u) to Owner(v)

both on how well they scale in response to an increasing num-
ber of agents (N ∈ {2, 4, 8, 12, 16, 20}, X = 50 · (N − 1))
and also on how they perform across various degrees of agent
coupling (N = 16, X ∈ {0, 50, 100, 200, 400, 800, 1600}).

The second source of problems is the WS problem set de-
rived from a multiagent factory scheduling domain (Wilcox
and Shah 2012). These randomly generated MaSTNs sim-
ulate N agents working together to complete T tasks in
the construction of a large structural workpiece in a man-
ufacturing environment using realistic task duration, wait,
and deadline constraint settings. This emulates a factory
manager who uses domain knowledge to progressively re-
fine the space of schedules until only feasible schedules re-
main. Like before, we evaluate algorithms both as number
of agents increases (N ∈ {2, 4, 8, 12, 16, 20}, T = 20 · N)
and also as the total number of tasks increases (N = 16, T ∈
{80, 160, 240, 320, 400, 480, 560}).

In our evaluations, we only consider consistent MaSTNs
(i.e., no overconstrained networks). Constraints are divided
into two sets: (i) structural constraints, where bounds are re-
laxed to their least constraining possible settings; and (ii) re-
finement constraints, representing the true underlying con-
straint bound values. PPC is established over the set of struc-
tural constraints which then acts as the initial input to our
incremental algorithms. Then, refinement constraints are
randomly chosen (with uniform probability) and fed into
the network, one at a time, until all constraints have been
incorporated. We wait until each update is fully processed
and quiescence is reached before feeding in the subsequent
constraint. The temporal reference point (i.e., z) is special
in the sense that it is not unique to any particular agent but
simultaneously known by all agents. We emulate this with a

3Problem sets available at:
http://dx.doi.org/10.4121/uuid:3e6a8869-8500-4979-bcfa-361e07fc0dc6

16

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 2 4 6 8 10 12 14 16 18 20

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Agents (N)

DITriSTP - No Latency
DITriSTP - High Latency

DIPPC - No Latency
DIPPC - High Latency

IPPC

(a) Runtime vs. Number of Agents

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0 200 400 600 800 1000 1200 1400 1600

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of External Constraints (X)

DITriSTP - No Latency
DITriSTP - High Latency

DIPPC - No Latency
DIPPC - High Latency

IPPC

(b) Runtime vs. Coupling

 10000

 100000

 1e+006

 1e+007

 1e+008

 50 100 200 400 800 1600

N
u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

Number of External Constraints (X)

DITriSTP - No Latency
DITriSTP - High Latency

DIPPC

(c) Messages vs. Coupling

 100

 1000

 10000

 100000

 1e+006

 2 4 6 8 10 12 14 16 18 20

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Agents (N)

DITriSTP - No Latency
DITriSTP - High Latency

DIPPC - No Latency
DIPPC - High Latency

IPPC

(d) Runtime vs. Number of Agents

 100

 1000

 10000

 100000

 1e+006

 80 160 240 320 400 480 560

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
ill

is
e
c
o
n
d
s
)

Number of Tasks (T)

DITriSTP - No Latency
DITriSTP - High Latency

DIPPC - No Latency
DIPPC - High Latency

IPPC

(e) Runtime vs. Number of Tasks

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 2 4 6 8 10 12 14 16 18 20

N
u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

Number of Agents (N)

DITriSTP - No Latency
DITriSTP - High Latency

DIPPC

(f) Messages vs. Number of Agents

Figure 4: Results for the BDH (top) and WS (bottom) problem sets.

special reference ‘agent’ to and from which there is no cost
for sending or processing messages (so agents have zero-cost
access to a synchronized clock).

We simulate a multiagent system on a 2.4 GHz processor
with 4 GB of memory using a message-driven approach.4 Our
simulator systematically shares the processor among agents,
tracking the wall-clock time each agent spends executing
its code. To ensure that messages are delivered in the right
order, we maintain a priority queue of pending messages
ordered by their timestamp. Within the simulated multia-
gent environment, agents can either idly wait for incoming
messages or check in a non-blocking way whether messages
are pending. The simulation ends once all agents are idle
and there are no pending messages. In our case the simula-
tion is kicked off by a special “nature” agent, which posts
refinement constraints one by one by sending a message to
one of the agents involved, and waits for quiescence every
time. Our setup allows us to simulate message latency by
adding a delay to the timestamp of a message before insert-
ing it into the queue. In our experiments, we penalized each
message with a delay chosen with uniform probability from
a range [0, dmax], where dmax is set to 0 or 100 milliseconds
to emulate No and High latency situations respectively. For
each parameter setting, we report the mean over 50 unique
problem instances.

Empirical Comparison. Our experiments are aimed at
discovering which algorithm performs best under which cir-

4Java multiagent simulator implementation available at:
http://dx.doi.org/10.4121/uuid:d68d75a0-ede1-4b0c-b298-d2181a7c6331

cumstances. To do this, we compare our two new distributed
algorithms, in both high and no latency settings, against
each other and against IPPC, the state-of-the-art centralized
approach. To improve clarity, we omit including the central-
ized version of DI4STP since IPPC outperformed it by a
steady, nearly order-of-magnitude factor in expectation. Our
experiments also implicitly validate that constraints can be
incrementally propagated on distributed, MaSTNs without
requiring additional centralization. Figure 4 displays a com-
parison of our distributed incremental algorithms where we
evaluate both (simulated) algorithm runtimes and the num-
ber of messages passed. Note that these runtimes reflect the
total (simulated wall-clock) time elapsed, not the summed
computational effort.

We start by describing the run-time results from our BDH
problem set, in Figures 4a–b. With no message latency, both
DI4STP and DIPPC achieve reduced execution time com-
pared to IPPC, with DIPPC improving by up to an order
of magnitude as the number of agents and external edges
grow. Even though DI4STP underachieved compared to
DIPPC with no message latency, it must be noted that it
achieved similarly impressive speedups over its centralized
counterpart. This demonstrates that when there is no message
latency, both algorithms are able to effectively load-balance
their efforts. At high latency, DI4STP exhibits a steady
order-of-magnitude improvement over DIPPC. For high mes-
sage latency, neither distributed algorithm outperforms IPPC,
which suggests that there are be cases where centralization
is most computationally efficient. Note however that IPPC’s
runtime increases faster, indicating there may eventually be a

17

cross-over point for problems with sufficiently many agents
and external constraints where our algorithms would outper-
form IPPC, even at high latency.

As shown in Figure 4c, when there is no message latency,
both new algorithms send similar numbers of messages. Re-
gardless of latency, DIPPC will—by design—always send
the same number of messages in the same order, whereas
latency increases the number of redundantly processed trian-
gles by DI4STP and consequently increases the number of
(likewise redundant) messages. However, the extra messages
sent by DI4STP propagate information through the network
faster, and while redundant computation is performed, the
chances that DI4STP can complete sooner than the more
synchronous DIPPC also improve.

The results from our WS problem set, displayed in Fig-
ures 4d–f, are very similar in nature to those from our BDH
problems. We briefly highlight a few key differences. First,
when there is no latency, DI4STP outperforms DIPPC,
which both outperform IPPC. We conjecture that the gains
made by the DI4STP are due to the more realistically struc-
tured problems of the WS set. An update in a WS instance is
more likely to cause more and longer paths of propagation
than an update in the more random structure of a BDH in-
stance. In such cases, DI4STP is better suited to short-circuit
long paths of propagation (albeit occasionally prematurely),
as compared to DIPPC, which carefully synchronizes path
traversal to avoid any wasted effort. A second difference
of note is that, at high latency, the prospect of a cross-over
between the IPPC curve and the curves of our distributed
algorithms is more evident. This indicates that realistic, well-
structured MaSTNs may have more to gain from the distribu-
tion of temporal network management.

The run-time performances of both algorithms are directly
impacted by the density of the resulting chordal graph. This
can be seen in Figure 4b, where runtime of both algorithms
increases as the number of external constraints increases. The
actual density of the chordal STNs varies from 2.0% to 45%,
where 0% and 100% respectively represent a graph without
any edges and a complete graph. In general, correlation of
density is negative with the number of agents N and with
the number of tasks T in the WS problem set, whereas it
is positive with the number of external constraints X in the
BDH problem set.

In addition to the results shown in these figures, we also
empirically verified our hypothesis that DI4STP does a
better job at minimizing agent idleness while DIPPC min-
imizes the total amount of work overall. We ground this
phenomenon with a result from the BDH problem set; similar
trends hold for the WS set. With N = 16, X = 1600, and
no latency, DIPPC executes 8 times faster, does 5 times less
work (sum of agents’ execution times), and achieves 37%
higher agent utilization (portion of time not spent idling) than
DI4STP. For the same problems with high latency, the total
amount of work performed is stable for DIPPC, while its
advantage over DI4STP grows to a total factor of 7. How-
ever, the latter’s agent utilization is now over 100 times higher
than DIPPC, whose total execution now takes 16 times longer
than DI4STP. Boerkoel and Durfee (2010) report that the
speedup of the DP3C algorithm, which must propagate all

edges in the MaSTN, decreases as the number of external
constraints increases. Interestingly, in the incremental set-
ting, which only needs to propagate the impact of an updated
edge, we found the opposite to be true: an increase in the
number of external constraints increased the opportunities
for concurrency by branching propagation to more agents.

In short, the meticulousness of DIPPC to avoid any super-
fluous computation makes it ideal for situations with low or
no message latency (e.g., parallel systems) while the asyn-
chronous nature of DI4STP makes it better suited to handle
scenarios with high message latency (e.g., messages that
must travel the Internet) or with long, structured propagation
paths. In many realistic scenarios, agents may interleave
managing their temporal networks with, e.g., looking for im-
proved plans or new scheduling opportunities (Barbulescu et
al. 2010). Here, concerns about high message latency are mit-
igated: DIPPC’s idle time may be put to good use by granting
agents increased time for managing other important tasks.
For example, an agent could spend its extra time evaluating
‘what-if’ scenarios on a copy of its local network or by track-
ing and rolling back changes, without global commitment.
In other settings, constraints may arise more quickly than
agents are able to process them. DI4STP implicitly handles
the asynchronous arrival of constraint updates and may here
have an advantage over DIPPC, which must wait until each
update is processed to completion.

Conclusion
Distributed maintenance of temporal networks is crucial to
the coordination of multiagent systems, allowing agents to
achieve increased autonomy and privacy over their local
schedules. We proposed two new distributed algorithms for
incrementally maintaining PPC on distributed, MaSTNs with-
out requiring additional centralization: (i) DI4STP, which
allows for the fast, asynchronous propagation of updates
throughout the network; and (ii) DIPPC, which carefully
propagates updates through a clique tree representation of
the network, thus meticulously avoiding redundant effort.
We demonstrated empirically that when message latency is
minimal, both algorithms achieve reduced solve times—by
upwards of an order of magnitude—as compared to the state-
of-the-art centralized approach, especially as problems grow
in the number of agents or external constraints. However,
as message latency increases, the relative performance of
DI4STP improves due to its asynchronous nature. In the
future, we would like to investigate a hybrid approach that
balances the benefits of asynchronicity with the advantages of
eliminating redundant behavior. One possibility is a variant of
DI4STP that instead maintains triangles in a priority queue
ordered by the clique tree distances. Another is modifying
DIPPC to eliminate some synchronization, thus increasing
agents’ ability to perform anticipatory computation.

Acknowledgments
We thank the anonymous reviewers for their suggestions.
This work was supported, in part, by the NSF under grant
IIS-0964512, by Boeing Research and Technology, and by a
University of Michigan Rackham Fellowship.

18

References
Barbulescu, L.; Rubinstein, Z. B.; Smith, S. F.; and Zimmer-
man, T. L. 2010. Distributed Coordination of Mobile Agent
Teams. In Proc. of AAMAS-10, 1331–1338.
Bliek, C., and Sam-Haroud, D. 1999. Path Consistency
on Triangulated Constraint Graphs. In Proc. of IJCAI-99,
456–461.
Boerkoel, J. C., and Durfee, E. H. 2010. A Comparison
of Algorithms for Solving the Multiagent Simple Temporal
Problem. In Proc. of ICAPS-10, 26–33.
Boerkoel, J. C., and Durfee, E. H. 2011. Distributed Al-
gorithms for Solving the Multiagent Temporal Decoupling
Problem. In Proc. of AAMAS 2011, 141–148.
Boerkoel, J. C., and Durfee, E. H. 2013. Distributed Reason-
ing for Multiagent Simple Temporal Problems. Journal of
Artificial Intelligence Research (JAIR), To Appear.
Bresina, J.; Jónsson, A. K.; Morris, P.; and Rajan, K. 2005.
Activity Planning for the Mars Exploration Rovers. In Proc.
of ICAPS-05, 40–49.
Bui, H. H.; Tyson, M.; and Yorke-Smith, N. 2008. Efficient
Message Passing and Propagation of Simple Temporal Con-
straints: Results on semi-structured networks. In Proc. of
COPLAS Workshop at ICAPS’08, 17–24.
Castillo, L.; Fernández-Olivares, J.; Garcı́a-Pérez, O.; and
Palao, F. 2006. Efficiently Handling Temporal Knowledge
in an HTN Planner. In Proc. of ICAPS-06, 63–72.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. In Knowledge representation, volume 49, 61–95.
The MIT Press.

Hunsberger, L. 2002. Algorithms for a Temporal Decoupling
Problem in Multiagent Planning. In Proc of AAAI-02, 468–
475.
Laborie, P., and Ghallab, M. 1995. Planning with Sharable
Resource Constraints. In Proc. of IJCAI-95, 1643–1649.
Planken, L. R.; De Weerdt, M. M.; and Van der Krogt, R.
P. J. 2008. P3C: A New Algorithm for the Simple Temporal
Problem. In Proc. of ICAPS-08, 256–263.
Planken, L. R.; De Weerdt, M. M.; and Van der Krogt, R. P. J.
2011. Computing All-Pairs Shortest Paths by Leveraging
Low Treewidth. In Proc. of ICAPS-11, 170–177.
Planken, L. R.; De Weerdt, M. M.; and Yorke-Smith, N.
2010. Incrementally Solving STNs by Enforcing Partial Path
Consistency. In Proc. of ICAPS-10, 129–136.
Shah, J. A., and Williams, B. C. 2007. A fast incremental
algorithm for maintaining dispatchability of partially control-
lable plans. In Proc. of ICAPS-07, 296–303.
Tarjan, R. E., and Yannakakis, M. 1984. Simple linear-
time algorithms to test chordality of graphs, test acyclicity
of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing 13(3):566–579.
Wilcox, R. J., and Shah, J. A. 2012. Optimization of Multi-
Agent Workflow for Human-Robot Collaboration in Assem-
bly Manufacturing. In Proc. of AIAA Infotech@Aerospace.
Xu, L., and Choueiry, B. Y. 2003. A New Efficient Algorithm
for Solving the Simple Temporal Problem. In Proc. of TIME-
ICTL-03, 210–220.

19

