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I. INTRODUCTION

An emerging trend in advanced manufacturing is the in-
creased prevalence of mobile, right-sized robots that work
safely and flexibly alongside humans across a wide variety
of tasks. Currently in such environments, human workers are
responsible for completing a variety of assembly tasks, such
as welding or torquing parts into place. While the assembly
tasks may require the skill and dexterity of a human worker,
a mobile robotic assistant could help fetch parts and tools, in-
creasing the overall productivity of the system. The rob@work
platform (Figure 1) by Fraunhofer IPA is an example of one
such mobile robot that is capable of fetching and picking
parts on behalf of its human coworkers. A rob@work consists
of a mobile base with four independent and individually
actuated wheels, and can be equipped with other sensors and
actuators, such as a robotic arm, to successfully interact with
its environment. A major challenge is that the manufacturing
environments in which these types of robots are designed to
operate are densely populated, dynamic, and human-oriented.
Human workers intuitively shuffle by each other through
the narrow corridors that emerge between conveyor belts,
various part bins, and tool carts. In most cases, this type of
coordination between humans is accomplished with little or no
explicit communication: humans quickly perceive and adapt to
the intentions and conventions of their coworkers. We coin the
term co-navigation to describe this natural and intuitive coor-
dinated dance that human teams perform with ease. This poses
an overarching challenge for a mobile robotic assistant: how to
safely integrate itself in this intuitively choreographed shuffle
of human workers in the presence of a cluttered, dynamic
environment. Next, we highlight the particular challenges that
await, along with our proposed approaches for addressing
them, en route to realizing our goal of effective human-robot
co-navigation.

II. OPEN CHALLENGES AND PROPOSED METHODS

A. Perceiving and Understanding Human Intentions

Humans successfully collaborate on tasks often without
explicit communication by using a variety of implicit social
cues and motions to convey intent. We look to exploit many
recent advances in human-robot interaction that use implicit
human communication to inform plan decisions. For example,
features such as the pose and motion of humans have been

Fig. 1: The rob@work platform by Fraunhofer IPA. Photo
Credits: http://idw-online.de and http://care-o-bot-research.org.

shown to help identify humans’ intended activities [1], while
the use of social cues have aided in achieving effective
turn-taking with humans [2]. Other recent work uses action
observations to infer, and autonomously react to, the intended
plan of a human [3]. While our primary contributions will be
in the adaptive planning and scheduling of robots in response
to their human coworkers, we intend to use these rich features
to capture human intent and inform our planning models.

B. Planning Efficacious and Timely Turn-taking

Typically, human teams develop implicit conventions, such
as social cues and turn-taking rules, that are learned over
time and allow natural negotiation without requiring explicit
communication. A primary goal of our work is to equip
robots with methods to quickly and robustly develop plans
that (1) adapt to established conventions to successfully ne-
gotiate human-oriented environments, and (2) augment the
workflow of human workers to increase overall productivity,
safety, and quality. We will extend previous work that used
Partially Observable Markov Decision Processes (POMDPs) to
autonomously perform socially situated tasks such as making a
left-hand turn or boarding an elevator [3], incorporating recent
work in turn-taking [2] and navigation through crowds [4].
We will also build on recent work that learns and exploits a
shared mental model between a robot and human-coworker,



allowing the robot to flexibly adapt its plan according to the
particular workflow patterns of individual human coworkers
[5]. We will continue using a POMDP to model and infer
(unobservable) intended activities of human coworkers, but we
are particularly interested in looking at the interplay between
planning which actions to take and the timing of these actions
(described in more detail next). We will investigate both which
human conventions tend to hold universally, and thus can
be explicitly programmed into the robot’s planning module,
and which elements require on-line learning to adapt to the
tendencies of individuals. Next, we discuss using a separate
timing representation to fluidly schedule events conditioned on
the selected POMDP policies.

C. Low Response-time Robot Dispatching and Scheduling

Minimizing the perceived lag and response time of a system
is critical in creating natural, fluid interactions between hu-
mans and robots. Unfortunately, explicitly capturing timing in
problem state significantly increases planning complexity. Our
idea is to continue in the spirit of approaches such as the time-
state aggregated POMPD [6] and event-driven interactions [7]
to reduce the complexity of planning by using abstraction to
decouple the scheduling and timing aspects from the POMDP
model. Constraint-based scheduling has proven particularly
effective in efficiently dispatching the schedules of multiple
interacting robots [8]. Further work has investigated ways to
decouple the interdependent schedule of one agent (in our case
the robot’s) from those of others’ (in our case the humans’)
[9]. This allows the robot to act completely autonomously,
thus further decreasing the amount of reasoning required to
act. We will extend this work both by exploiting additional
problem structure, and by conditioning temporal constraints
to be an optimal response to human actions. This leads to
non-volitional schedule refinements of two kinds: (i) those
to current (or past) events based on humans’ actual plan
execution; and (ii) those to future events added by the planner
in response to perceived human intent. Decoupling timing
from planning is not the only abstraction that we expect might
yield benefits; explicitly limiting the time horizon has proven
also useful in the real-time coordination and control of teams
of mobile robots in noisy and dynamic environments [10].

D. Conveying Intended Route

Once a robot has chosen a policy, planned a route, and is
ready to schedule the execution of this route, it must effectively
communicate its intentions to ensure the continued safety and
fluidity of its interactions with a human teammate. There are
many modes of implicit or explicit communication that a robot
could take. We propose equipping our mobile robots with a
laser-based projection system that can both indicate the robot’s
target destination and also convey its intended near-term route
(in terms of heading and velocity) through a projection onto
the factory floor. Our hypothesis is that projection, coupled
with a robot that can robustly recognize and plan around
human teammates’ implicit social cues (e.g., pose or facial
expressions), will increase the overall timeliness and fluidity

of the robot’s interactions with humans. We will evaluate this
using both quantitative and qualitative metrics, including the
overall time required to complete a human-robot shuffling of
positions, human coworker’s Likert-scale reports of the quality
of exchanges, and the qualitative evaluation of domain experts.

E. Evaluation in Human Environment
We will test our algorithms on a mobile robot deployed

in a real industrial manufacturing environment. While we
will adopt externally developed methods for addressing many
perceptual and control challenges, the changing positions of
pick carts and a moving conveyor belt provides us a dynamic,
cluttered environment in which to evaluate the robustness
and generality of our approach. This will allow us to test
our socially-adept, co-navigational planning techniques across
paths with a wide-variety of clearances and complexities.

III. EXPECTED CONTRIBUTIONS

The overarching goal of our work is to achieve high-
quality, human-robot co-navigation through the safe and fluid
integration of mobile robots into the negotiated choreography
of human workers in the presence of a cluttered, dynamic
environment. We expect that working towards this goal will
lead to the following contributions: (i) a general planning
framework that incorporates a rich space of implicit features
based on human poses, social cues, and conventions; (ii) a
new human-aware approach to planning and scheduling that
explicitly decouples timing from the plan model; (iii) new
schedule dispatch techniques that exploit underlying problem
structure and are immediately responsive to human actions;
(iv) a novel approach for conveying intended paths; and (v) an
evaluation of our methods in a real, human-oriented manu-
facturing environments with various navigational hazards. In
the future, we hope to extend and evaluate our approaches
across a wider variety of both human-robot interaction and
planning/scheduling problem domains.
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