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Abstract

Generating and executing multi-agent schedules is difficult
in uncertain environments. The current state-of-the-art al-
gorithm maintains a high success rate by rescheduling fre-
quently, but this approach involves substantial resource over-
head due to computing and communicating new schedules.
Aggressive rescheduling could thus reduce overall mission
duration in situations where agents have limited energy
and computing power. We thus explore the trade-off be-
tween the number of reschedules and success rate. Specif-
ically, we propose three new algorithms that strategically
decide when rescheduling is most likely to meaningfully in-
crease the probability of success. Additionally, we empiri-
cally show that, while there is a trade-off between the num-
ber of reschedules and schedule success rate, it is possible
to reduce the number of reschedules without proportionally
decreasing success. We find that one of our approaches, Al-
lowable Risk, allows us to gracefully trade reductions in suc-
cess rate for significant reductions in the number of resched-
ules, and thus communication, of a state-of-the-art dynamic
scheduling algorithm.

Introduction
Generating and executing schedules in multi-agent systems
is an enabling technology for many applications, such as
cooperative teams of airborne, surface operating, or under-
water robots. Providing this capability requires effective
multiagent coordination, since these applications involve
uncertain environments that may challenge the success of a
mission. In this paper, we focus on a scenario where this re-
quirement is met by scheduling centrally and broadcasting
a joint schedule to individual agents. However, a fixed, pre-
defined schedule only uses the information that was avail-
able when it was created. As the mission progresses, un-
certain events (e.g. unexpectedly long task durations) may
disrupt the schedule. To take advantage of this new infor-
mation, we need an algorithm to reschedule in response to
these uncertain events.

Dynamic execution algorithms reschedule in response
to new information, potentially increasing the chance that
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the mission succeeds. However, they may reschedule fre-
quently, which means that the centralized scheduler would
have to frequently send out new schedules to agents. While
this frequent communication would not be a problem in
some circumstances, in many applications, conserving bat-
tery power is an issue and communications are energy in-
tensive, so any extra communication detracts from the time
agents can spend completing their mission. To address this
problem, we propose three new execution algorithms that
limit how often schedules are sent:
• Sufficient Improvement sends out a new schedule only if

it is likely to significantly increase the predicted proba-
bility of success;

• Allowable Risk reschedules more often when schedules
are more risky and less often when schedules are less
risky; and,

• Coordination Targeting uses constraints between agents
to determine when to reschedule.

We conduct an empirical evaluation showing that Sufficient
Improvement and Allowable Risk can decrease reschedul-
ing without proportionally decreasing success rate, and
evaluate the trade-offs between rescheduling frequency and
success rate. We find that Allowable Risk allows us to
gracefully trade reductions in success rate for significant re-
ductions in the number of reschedules, and thus communi-
cation, of a state-of-the-art dynamic scheduling algorithm.

Background
Unmanned aerial vehicles (UAVs) have been used for mis-
sions ranging from collecting data on wildlife to monitoring
wildfires. More complex missions have been proposed and,
on small scales, demonstrated using UAV teams that com-
municate over radio cross-links with each other (e.g. Cesare
et al.; Li et al. (2015; 2016)). Despite numerous advances
in energy storage, battery life generally limits UAV mission
duration (Quach et al. 2013). In particular, communications
between UAVs and between the UAV and base stations can
consume considerable energy, spurring research in energy-
efficient communications between UAVs to enable relays
(Zhang, Zheng, and Zheng 2017). In a UAV team, conduct-
ing missions in the presence of uncertainty that may require



rescheduling, communicating the new schedule consumes
energy, and could therefore shorten the mission.

Let us consider a wildfire surveillance coordination prob-
lem involving two UAVs, Agent A and Agent B. Both
agents must capture infrared images of the wildfire from
different locations and send them back to a base station.
Suppose for the entirety of this example that Agent B is
between Agent A and the base station, and can communi-
cate with both, but Agent A can only communicate with
Agent B. Agent A takes an infrared image, but must sub-
sequently relocate to a safe position due to unsafe flying
conditions in its vicinity. Once Agent A is in its new po-
sition, it must send the image to Agent B, which can later
send the image to the base station. However, Agent B must
also travel a (shorter) distance before relaying Agent A’s
image, because it must take a second image at the new lo-
cation. Agent B’s second image acquisition must take place
immediately after its first image, and thus before receiving
Agent A’s communication. Agent A’s and Agent B’s nav-
igation tasks take around 40 and 10 seconds, respectively,
and these durations are uncertain due to wind and localiza-
tion error. The image sending/receiving task also takes an
uncertain amount of time–around 5 seconds. Because the
agents would have to do much more than mentioned (i.e.
this subproblem is a small portion of a much larger prob-
lem), we want the agents to finish their tasks within a spec-
ified amount of time, namely 60 seconds.

In general, this class of problem can be posed and solved
as a Decentralized Partially Observable Markov Decision
Problem (DEC-POMDP). For instance, Wu, Zilberstein,
and Chen (2011) consider how to reschedule in such cases
in the presence of little communication. For our work, we
limit the expressiveness of the problem under consideration
to Probabilistic Simple Temporal Networks (PSTNs), de-
fined in the next section. While tractable, the PSTN frame-
work still exposes the fundamental problem of deciding
when to reschedule, and how to communicate changes of
schedules between agents.

Probabilistic Simple Temporal Networks
A Simple Temporal Network (STN), S = (T,C), consists
of a set T = {t0, t1, . . . , tn}, where each timepoint ti rep-
resents the time at which a distinct event happens, and a set
C of binary constraints cij on events in T . These constraints
are of the form tj − ti ≤ bij , for some bij ∈ R (Dechter,
Meiri, and Pearl 1991). The two constraints between ti and
tj can be written concisely as tj − ti ∈ [−bji, bij ]. STNs
are often encoded as directed graphs, where events are ver-
tices and constraints are edges. A schedule is an assignment
of values to events such that all constraints are satisfied. An
STN is considered consistent if it has at least one schedule.

Since the physical world is inherently uncertain, account-
ing for uncertainty in our representation allows it to bet-
ter model real-world problems. In a Simple Temporal Net-
work with Uncertainty (STNU), the set of constraints C
is divided into two disjoint subsets, called CR, the set of
requirement edges, and CC , the set of contingent edges.
Requirement edges are identical to the constraint edges in
a standard STN. A contingent edge, however, represents
that the time that elapses from ti to tj , given by βij ∈
[−bji, bij ], is chosen by an uncontrollable process and is

unknown prior to execution (Vidal and Ghallab 1996).
An event whose incoming edges are all requirement

edges is known as an executable timepoint, because the
agent executing the schedule controls when it happens, or
executes. A timepoint with an incoming contingent edge is
known as a contingent timepoint, since it happens automat-
ically some time after the timepoint that initiates the contin-
gent edge. When a contingent timepoint happens it is said
to be received. We call the set of contingent timepoints TC ,
and the set of executable timepoints TX .

STNUs are strongly controllable if each executable time-
point can be restricted such that, for all possible contingent
timepoint outcomes, all requirement constraints are satis-
fied. Not all STNUs satisfy this restrictive property. Some
STNUs are dynamically controllable, which means a lim-
ited form of contingent schedule can be produced prior
to execution; these schedules describe, in a compact way,
when to schedule future executable timepoints in response
to contingent timepoint outcomes. In this paper, we use dy-
namic rescheduling to address these uncertain outcomes.

A Probabilistic Simple Temporal Network (PSTN) ex-
tends an STNU by adding information about the uncer-
tain processes that govern contingent edges. For a PSTN’s
contingent edges, the time that elapses from ti to tj is
chosen by a random variable Xij , whose value is deter-
mined at execution by some PDF Pij (Tsamardinos 2002;
Brooks et al. 2015). Since contingent edges in PSTNs are
governed by unbounded probability distributions, they can-
not be strongly controllable. However, as we will later dis-
cuss, some algorithms still use the idea of strong controlla-
bility to solve PSTNs.

Figure 1: PSTN for our example problem.

Example Problem The PSTN representation of our run-
ning UAV example problem is shown graphically in Figure
1. Each vertex represents a timepoint. The agent to which a
particular timepoint corresponds is indicated by the super-
script. Two such timepoints could be the start and end times
of Agent A’s image taking task, which are represented as
tA0 and tA1 , respectively. Directed edges represent tempo-
ral constraints and are labeled with the range of time that
is allowed to elapse between the occurrence of the events
represented by the source and target timepoints. There are
three types of directed edges: thick edges represent contin-
gent edges, dashed edges represent interagent constraints,
and straight, slim edges represent requirement edges. All
tasks must be completed within 60 seconds, shown by the
constraint [0,60] above each vertex. Agent A’s subproblem
is contained in the top half of the figure, while Agent B’s
subproblem is contained in the bottom half of the figure.



Execution Algorithms for PSTNs
Early First Early First is a naı̈ve algorithm for decid-
ing when to execute the timepoints in a PSTN. As its
name implies, it executes timepoints as soon as they can
be executed–when they are both live, meaning that they are
within their acceptable time range, and enabled, meaning
that all predecessor timepoints have been executed.

The Static Robust Execution Algorithm While algo-
rithms like Early First can be effective in practice, they are
agnostic as to the impact of uncertainty on performance. In
our UAV example problem, if both agents start navigating
as soon as possible, it is highly likely that Agent B will ar-
rive at its destination more than 10 seconds before Agent A,
resulting in failure. To maximize the probability of success,
Agent B should wait before navigating. The Static Robust
Execution Algorithm (SREA) was motivated by this limi-
tation (Lund et al. 2017). SREA tries to address this lim-
itation by maximizing robustness, the probability that all
events are executed without violating constraints (Brooks
et al. 2015). Robustness is the complement of risk, intro-
duced in (Fang, Yu, and Williams 2014).

In order to maximize robustness, SREA attempts to cre-
ate a strongly controllable STNU with a minimum proba-
bility of failure. SREA sets a maximum probability α that a
contingent edge in the original PSTN fails because it is too
short or too long. This makes 1−α the minimum probabil-
ity mass of the contingent edge captured by a corresponding
interval in the STNU. To find the optimally robust sched-
ule, SREA does a binary search over α. For each α, it uses
a linear program to maximize the probability mass captured
by the interval over each contingent timepoint. In a sense,
SREA maximizes the probability that uncertain events will
occur during these intervals. Once it finds the optimally ro-
bust schedule, it can execute this more constrained sched-
ule using Early First. In our running example, SREA would
constrain Agent B to wait before navigating to maximize
the probability that the arrival times of both agents overlap.

SREA is good at using initial information to maximize
the probability of success. However, it can fail when un-
certain timepoints fall outside of their designated intervals
during execution. In addition, SREA is limited because it
cannot re-optimize constraints when new real-time infor-
mation, such as the actual time of an uncertain event, is
gained. This is because SREA is a static algorithm, in that
it does not change the schedule in real-time. Therefore, dy-
namically updating the guiding schedul can be beneficial in
situations with uncertain events.

The Dynamic Robust Execution Algorithm The Dy-
namic Robust Execution Algorithm (DREA) builds on
SREA with the goal of maximizing robustness by adding
the ability to incorporate new information during execution
Lund et al. (2017). It creates an initial schedule by running
SREA and uses it to guide execution. Whenever a contin-
gent timepoint is received or enabled, DREA updates the
PSTN with this new information, and calls SREA to create
a new schedule.

Reducing Communication in DREA
DREA has a significantly higher success rate than Early
First on the set of benchmark PSTNs in Lund et al. (2017).

However, this high success rate comes with the cost of large
amounts of rescheduling. In many scenarios, including as
our UAV example, communicating new schedules is costly,
so DREA may have undesireably high computational over-
head.

With this in mind, we have investigated three possible
methods for limiting when DREA reschedules such that
communication is reduced without drastically diminish-
ing success rate. Sufficient Improvement seeks to reduce
rescheduling frequency by only rescheduling when the
new schedule has a better predicted probability of success
than the previous one. Allowable Risk makes reschedul-
ing frequency proportional to the quantity of risk present
in the problem. Coordination Targeting attempts to focus
rescheduling only in preparation for events subject to inter-
agent constraints.

Our algorithms are modifications to DREA. They act ex-
actly as DREA does except when a timepoint is enabled
or received, in which case, instead of always rescheduling,
they more judiciously decide whether to reschedule. Suffi-
cient Improvement and Allowable Risk use the minimum
improvement thresholds m and x, respectively, in their cal-
culations to make this decision. Allowable Risk also uses a
counter k that increments whenever a timepoint is received
and resets when rescheduling. The value of this counter and
the threshold inputs is explained in our algorithm details.
We rewrite DREA as a routine that utilizes our subroutines
in Algorithm 1.

Algorithm 1: Modified DREA
Input : A PSTN S, a rescheduling strategy s
Input : A min improvement threshold 0 < m < 1
Input : A min success threshold 0 < x < 1
guideSTN,α← SREA(S) ;
k ← 0 ;
while S.isConsistent() and not S.allExecuted() do

if any t ∈ TC is received or enabled then
S.update(t);
if t is received then

k ← k + 1 ;
(guideSTN,α, k)←

maybeReschedule(guideSTN, s,m, x, α, k)
else

foreach live & enabled t ∈ TX according to
guideSTN do
S.execute(t);
guideSTN .execute(t);

Sufficient Improvement
The concept underlying Sufficient Improvement (SI) is to
only use schedules that sufficiently improve the chances of
success. Like DREA, it will always create a new schedule
any time it gets new information. Unlike DREA, SI will
only send out this new schedule if it calculates that the new
schedule has a significantly larger probability of success
than the schedule currently in use.

We represent SI as part of the maybeReschedule
subroutine of DREA presented as Algorithm 2. The



maybeReschedule subroutine is called whenever a time
point is received or enabled. SI requires an input minimum
threshold for improvement 0 < m < 1. When we run SI,
it first calculates a new potential schedule with SREA, then
records the number of contingent events left in our STN.
SI then uses these values to determine if the difference be-
tween the probability of success of the new schedule and
the probability of success as calculated at the last resched-
uled is sufficient. When DREA runs SREA to generate a
schedule, as noted above, it creates an interval around each
uncertain edge that captures some amount of the probabil-
ity mass of that edge. For each duration, this interval cap-
tures at least 1 − α of the probability mass. SI calculates
the probability of a schedule executing without violating a
constraint by multiplying the captured probability mass for
each uncertain edge. Generally speaking, this probability is
bounded by p← (1−α)n, where n is the number of uncer-
tain edges. Note that this is actually an underestimate, since
SREA expands the intervals somewhat beyond 1−α of the
probability mass. SI then takes the difference between the
new probability and the old probability. If this difference is
above our threshold value m, it uses the new schedule.

If a contingent edge invalidates the current schedule gen-
erated by SREA by falling outside of its allowed range, SI
continues to use the now-violated schedule until reschedul-
ing is triggered. The execution is not considered failed un-
less one of the constraints from the original STN is violated.
All of our rescheduling strategies handle violations of the
SREA-generated schedule in this fashion.

Algorithm 2: maybeReschedule() Subroutine
Input : An STNU guideSTN
Input : A rescheduling strategy s
Input : A min robustness α
Input : A received contingent event count k
Input : A min improvement threshold 0 < m < 1
Input : A min success threshold 0 < x < 1
if s == “SI” then

(maybeGuideSTN,α1)← SREA(S) ;
n← maybeGuideSTN.numCEventsLeft() ;
p0 ← (1− α)n ;
p1 ← (1− α1)

n ;
if p1 − p0 > m then

guideSTN ← maybeGuideSTN ;
α← α1 ;

return (guideSTN,α, k)

else if s == “AR” then
n← 0 ;
while ((1− α)n+1 > x) do

n← n+ 1 ;
if k ≥ n then

(guideSTN,α)← SREA(S) ;
k ← 0 ;

return (guideSTN,α, k)

SI’s threshold influences how often the algorithm
reschedules. If the threshold is low, we expect the algorithm
will reschedule often, resembling DREA. Alternatively, if
the threshold is high, the algorithm will reschedule less of-

ten, performing like SREA. In between extreme values, we
expect to see a trade-off, where we reduce communication
but also decrease the success rate as we increase the thresh-
old.

Allowable Risk
Our next rescheduling strategy reduces rescheduling de-
pending on the riskiness of a schedule. Allowable Risk
(AR) decides how many uncertain events it can allow to
occur statically with an acceptably high probability of suc-
cess, as defined by a threshold. Then it simply allows those
events to occur without intervening, and reschedules when
they have all happened. This strategy limits communication
by setting the rescheduling frequency in direct proportion
to the risk associated with the intervals generated by SREA,
since lower risk will allow larger groups of uncertain events
to execute statically.

AR is also designed as part of the maybeReschedule
subroutine of DREA in Algorithm 2. It requires an input
0 < x < 1 to represent the minimum robustness thresh-
old. AR first finds the largest integer value of n such that
(1 − α)n > x for threshold x. AR then reschedules if the
received event counter k exceeds n (see Alg. 1). When it
reschedules, AR resets k to 0. Rescheduling will also pro-
duce a new α, leading to a new value for n (in the while
loop of Alg. 2). Thus, if SREA generates a schedule with
high α, AR will reschedule sooner than if SREA had gen-
erated a schedule with low α. As a proxy for probability of
failure, α ties rescheduling frequency to the risk present in
the schedules generated by SREA.

Since AR treats a threshold as a minimum probability of
success allowed, a higher threshold could lead to frequent
rescheduling, resembling DREA. However, a lower thresh-
old could lead to low success rate from too little reschedul-
ing, performing like SREA.

Coordination Targeting
Our last rescheduling strategy seeks to use the structure of
STNs to identify occasions when rescheduling will be most
meaningful. Intuitively, it seems likely that rescheduling in
preparation for constraints between events belonging to dif-
ferent agents, or interagent constraints, will be particularly
impactful, because these constraints represent more com-
plex interactions involving multiple agents.

Based on this observation, we design Coordination Tar-
geting (CT) to reschedule right before we execute exe-
cutable events that are subject to interagent constraints, and
right before we execute the last executable events preceding
contingent events that are subject to interagent constraints.
First, it sets a flag to track whether a timepoint has been
received or enabled since last rescheduling. Next, if any ex-
ecutable timepoints are enabled, it creates a copy of the cur-
rent PSTN with all requirement edges removed. The algo-
rithm then checks whether any timepoints involved in inter-
agent constraints are reachable from the currently enabled
executable timepoints. If that condition is true and the flag
is set to true, then CT calls SREA to generate a new sched-
ule, and sets the flag to false. This way, we are able to focus
rescheduling around the decisions we expect to matter the
most: the final executable timepoints before an interagent
constraint.



To further explain CT, consider running CT on the ex-
ample PSTN illustrated in Figure 1. For the interagent con-
straint tB2 −tA2 ∈ [−5, 5] the algorithm reschedules right be-
fore tA1 and right before tB2 , since tB2 is an executable time-
point and tA1 is the last executable before tA2 , a contingent
timepoint. For the interagent constraint tB3 − tA3 ∈ [−5, 5],
the algorithm provides no additional rescheduling, because
there are no executable timepoints between tA2 and tA3 , nor
between tB2 and tB3 . In other words, rescheduling at this
point would not be useful, since we don’t get to make any
new decisions before tA3 and tB3 are received.

This algorithm could fail to reduce rescheduling if all
events are constrained by interagent constraints. If there are
not enough events under interagent constraints, this algo-
rithm may act similarly to SREA, and therefore have lower
robustness. Unlike our other two algorithms, the limitations
of this algorithm are entirely dependent on the input. Thus,
this algorithm cannot be tuned.

Algorithm 3: Coordination Targeting
Input : A PSTN S
guideSTN ← SREA(S) ;
while S.isConsistent() and not S.allExecuted() do

new ← False ;
resched← False ;
foreach t received or enabled ∈ TC do

S.update(t) ;
new ← True ;

foreach t enabled ∈ TX do
if t is controllable then

pGraph← guideSTN.justCEdges ;
foreach interagent constrained s ∈ T do

if t.reachs(s, pGraph) and new then
resched← True

if resched then
guideSTN ← SREA(S) ;
new ← False ;

foreach live & enabled t ∈ TX according to
guideSTN do
S.execute(t);
guideSTN .execute(t);

Experimental Setup
Next we describe our experimental setup for empirically
evaluating our approaches.

Scheduling Problem Testbed
Our evaluation methods attempt to recreate the experiments
of Lund et al. (2017) to yield comparable results. First, our
data set contains the same PSTNs used to evaluate DREA
in Lund et al. (2017). These PSTNs were generated by the
random robot navigation problem generator of Brooks et al.
(2015). They generally have 20 timepoint variables divided
among 2 to 4 agents, 20 to 35 total constraints, and a max-
imum of 15 contingent edges. We generated 30 PSTNs per
combination of input features, totaling to 1620 schedules.

To evaluate a wide range of problems, our PSTNs were
constructed from varying three input features: degree of
synchronization, interagent constraint density, and stan-
dard deviation. The first feature is degree of synchroniza-
tion, which sets a time upper bound between any two con-
strained events for different agents. In other words, it is the
“tightness” of bounds on interagent constraints. From the
Lund et al. (2017) data set, degree of synchrony varies be-
tween 1000, 2000, and 4000 times the standard deviation
(described later in this section).

Another input feature is interagent constraint density,
which defines the fraction of requirement constraints that
are between agents. Varying our results across different val-
ues for interagent constraint densities reveals the impact of
agent coupling intensity on the success of our algorithms.
Interagent constraint density is set to 0.4 or 0.8.

The last input feature is standard deviation of uncertain
events to measure the degree of uncertainty in the input
PSTN. The higher the degree of uncertainty, the wider the
constraint probability distributions, and the harder it is for
SREA to obtain a large α value. Varying the degree of un-
certainty informs our understanding of our execution al-
gorithms’ performance since they aim to find a success-
ful schedule in uncertain situations. The standard deviation
was measured by a kurtosis metric for contingent edge dis-
tributions, which took values 1, 3, and 5. Kurtosis is a mea-
sure of how “peaky” a distribution is. A kurtosis value of 3
corresponds to a normal distribution, while a kurtosis of 1
corresponds to a flatter distribution with higher standard de-
viation, and a kurtosis of 5 corresponds to a more “peaky”
distribution with lower standard deviation.

These problem features may generally impact the trade-
off between robustness and communication that our algo-
rithms are designed to manage. If we find our algorithms
behave consistently across different values of these three
input features, we will have a stronger basis to claim that
our results generalize to different types of input scenarios.
On the other hand, if our results are inconsistent across dif-
ferent values of one feature, we gain more insights into the
scenarios in which one algorithm outperforms another.

Simulation

We also adapted the simulation software used in Lund et
al. (2017). The simulation uses our data set to measure av-
erage success rate and duration. We additionally measured
two other metrics, number of reschedules and accumulated
bandwidth, to analyze trade-offs. The number of resched-
ules counts how often an algorithm sends out a new sched-
ule, and accumulated bandwidth sums the sizes of all sent
schedules, where the sizes are calculated as the sum of the
number of edges and number of timepoints in the schedule.

We evaluate each algorithm on each PSTN in the data set
390 times, sampling uncertainty distributions during execu-
tion. For SI, we evaluate thresholds from 0.1 to 0.5 in steps
of 0.1. For AR, we vary the threshold from 0.1 to 0.9 in
steps of 0.2. In varying the thresholds, we gain more insight
into the trade-offs between relaxed rescheduling constraints
and schedule success rate.
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Figure 2: Simulated results for Sufficient Improvement (SI) and Allowable Risk (AR). We plot the success rate, number of
reschedules, and bandwidth for each threshold as percent reduction relative to DREA.

Counting Rescheduling in DREA
DREA reschedules whenever a contingent timepoint is re-
ceived or enabled. This means that between the time a
contingent timepoint becomes enabled and the time it is
received, DREA is continuously rescheduling. However,
in practice, the simulator that we adapted is event-based,
which only yields opportunity to reschedule when time-
points are received or executed. This behavior prevents
DREA from rescheduling continuously between events,
significantly reducing how often it reschedules. We expect
that our rescheduling strategies would dramatically reduce
continuous scheduling between timepoints in DREA imple-
mentations that use a time-based simulator, so their reduc-
tion in rescheduling would be even greater.

Empirical Evaluation
The ultimate goal of our analysis is to understand the trade-
off between rescheduling and success rate in our algo-
rithms. We consider the thresholds of SI and AR, because
thresholds control how selective an algorithm is about send-
ing out new schedules, which then impacts success rate. We
compare the success rates and number of reschedules of our
algorithms to those of DREA and the minimally scheduling
algorithms, Early First and SREA. Finally, we further ex-
amine the trade-off between rescheduling and success rate
for different thresholds of AR. Through such analysis, in-
dividuals can determine which algorithm and threshold are
most appropriate for their purposes.

Impact of Thresholds
First, we compare the performance SI and AR with dif-
ferent thresholds against DREA. In Figure 2, we graph a
percent reduction in success rate, number of reschedules,
bandwidth, and simulation duration from DREA in tandem
across all thresholds for a single algorithm. Our percent de-
crease for SI, for example, is calculated as in Equation 1.

Dec = 100 · xDREA − xSI

xDREA
. (1)

Here, xDREA is the average value of that metric for
DREA, xSI is that for SI, and Dec is the percent decrease

in the metric. We expect a positive value, because DREA
generally has higher values for all the dependent metrics. A
near zero value signifies this algorithm performs similarly
to DREA, and a larger value indicates a larger decrease
in that metric for the algorithm. Ideally, for the new algo-
rithms, success rate would not decrease relative to DREA;
however, rescheduling, bandwidth proxy, and runtime ide-
ally would decrease.

We make three significant observations about SI from
Figure 2a. First, note that all values are positive. Since the
graph depicts the percent reduction from DREA, that means
our algorithms have a lower success rate as well as less
rescheduling than DREA, as expected. Additionally, the
metrics do not vary much across thresholds for SI; the total
ranges are only 3.66% ± 2.52% for success rate, 4.34% ±
0.70% for number of reschedules, and 3.78% ± 0.76% for
bandwidth. Thus, our thresholds (0.1 - 0.5) have no sig-
nificant impact on the functionality of the algorithm. We
theorize that if we had expanded our range of thresholds
to contain negative values (i.e. the new schedule is riskier
than the old), then as the threshold approached -1, the per-
formance would approach that of DREA. Such behavior oc-
curs because a very low threshold allows the algorithm to
reschedule in more cases, approaching the functionality of
DREA. Likewise, in the higher range, SI may reschedule
infrequently, and thus act more similarly to SREA. Finally,
the percent reduction for success rate (42.45%± 0.78% on
average) is significantly lower than the percent reduction
in number of reschedules and bandwidth (74.26%± 0.22%
and 67.44% ± 0.24% on average respectively). This com-
parison signifies that the proportional loss in success rate is,
on average, 31.81%± 0.81% and 24.99%± 0.82% smaller
than the proportional loss in the respective communication
metrics. Thus, SI results are promising in reducing commu-
nication to a large extent while preserving a higher success
rate.

Figure 2b plots the same data across different thresholds
for AR. From this plot, we see many of the same patterns
present in the corresponding SI graph. All values are within
error of or above zero, so AR consistently has lower success
rates and communication metrics, as expected. The gaps



AR Threshold Reschedules Success Rate
0.1 1.7 21%
0.3 2.8 22%
0.5 3.9 27%
0.7 5.8 30%
0.9 6.7 32%

Table 1: For each threshold of Allowable Risk (AR), we
also compute the average number of reschedules and the
average success rate across all runs over all inputs.

between the success rate with number of reschedule and
bandwidth reductions are smaller (16.84% ± 0.84% and
12.14% ± 0.84% on average respectively) so AR is less
effective at lowering rescheduling than SI. However, AR
does a better job of maintaining success rate. Its success
rate is within error of DREA’s at threshold values of .7 and
.9, where success rate is reduced by 1.14% ± 3.12% and
−2.78%± 3.22% compared to DREA, respectively.

The main difference is that the performance of AR varies
with respect to threshold. As the threshold decreases, the
success rate and rescheduling reductions all decrease at ap-
proximately the same rate (on average, 9.67% ± 1.17%
and 12.75% ± 0.46% per 0.2 units of threshold respec-
tively). We expect this result, because at a threshold of 0,
AR will always reschedule, and thus act like DREA, while
at a threshold of 1, it will never reschedule, and thus act
like SREA. This graph explores thresholds in between and
depicts a reasonable downward trend. AR also decreases
communication more than success rate. In addition, varying
the parameter depicts a clear trade-off between low thresh-
olds (following low communication) with low success rate.
Therefore, AR is tunable across the range 0.1 to 0.9.

In Figure 2, we also map the percent reduction for run-
time. For AR, the runtime depicts the same general down-
ward trend across threshold as the other metrics. This
downward trend is expected, because AR refrains from
computing new schedules when it decides against sending
one. SI does not exhibit this same property; it always cal-
culates a new schedule, then decides whether to send it out.

Trade-offs Within Allowable Risk
We also attempt to more clearly understand the magnitude
trade-offs between number of reschedules and success rate
in AR. In Table 1, we calculate AR’s average success rate
and number of reschedules for a given threshold. Note, this
table represents the same experiment as in Figure 2b, but
this time we present the absolute (vs. relative) success rate
and number of reschedules. We observe that average suc-
cess rate tends to increase as average number of resched-
ules increases. We would expect this trade-off, because the
higher the number of reschedules, the more information
used in rescheduling, the better the performance. Note this
pattern is not evident for SI.

Across our analyses, we explore a number of ways to
represent the trade-offs between success rate and commu-
nication. Our algorithms successfully explore the space be-
tween SREA and DREA in terms of amount of communica-
tion and success rate. In addition, we find the AR threshold
corresponds well with amount of communication, and thus
provides a good basis for directly analyzing the trade-off

between communication and success rate.

Impact of Problem Features
Beyond evaluating threshold effects, we compare our algo-
rithms with DREA, SREA, and Early First across different
classes of inputs. Figure 3 show two examples of simple av-
erage metric comparison across different algorithms. For all
algorithms, we graph the success rate, number of resched-
ules, and bandwidth as functions of degree of synchrony,
interagent constraint density, and standard deviation. This
arrangement yields a unique graph for each pairing of a
dependent and independent variable (ie, success rate and
degree of synchrony). With these graphs, we can directly
compare the performance of all parameters for each metric
across all input features.

In this paper, we only show success rate and number of
reschedules for degree of synchrony in Figure 3. We se-
lected these graphs to show clear trends from several input
values. However, the same trends are also present for inter-
agent constraint density and standard deviation.

Figure 3a shows that the success rate of all of our algo-
rithms is consistently between that of DREA and SREA,
as expected. Our algorithms all are modifications of DREA
that schedule less, and therefore don’t utilize as much infor-
mation. However, they all still reschedule more than SREA.
It is also noteworthy that SI and AR outperform Early First,
while only CT seems to track Early First, even though Early
First never communicates. Therefore, CT failed to preserve
a large enough success rate to make rescheduling worth-
while in comparison.

In addition, we note that as degree of synchrony in-
creases, success rate increases. Such a correlation makes
sense, because the higher the value, the larger the possible
acceptable time range for constraints between agents. The
constraints are simply less strict, and thus easier to satisfy.

Similarly, Figure 3b shows that the number of resched-
ules of all of our algorithms is consistently between DREA
and SREA. SI reschedules at a rate close to SREA, which is
optimal. CT and AR both consistently outperform DREA,
but are not as good as SI in this sense. Lastly, there is no
trend in number of reschedules as degree of synchrony in-
creases.

Figure 3, as well as all graphs of this class, additionally
express that the aforementioned results hold across differ-
ent input feature values. The input features are designed
to represent important aspects of scenarios, implying our
conclusions hold for many different types of scenarios. Our
results are thus more generalizable.

Discussion
In this paper, we augment Lund et al. (2017)’s DREA to
maintain its high success rate while simultaneously reduc-
ing its high number of reschedules. To this end, we propose
three new algorithms: Sufficient Improvement (SI), Allow-
able Risk (AR), and Coordination Targeting (CT).

Our exploration of these algorithms and their parameters
shows a clear trade-off between rescheduling and success.
We are therefore unable to conclude which of our algo-
rithms is best, because it depends on the relative importance
of rescheduling and success for a given application.
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Figure 3: Results of all our algorithms across different degrees of synchronization. The thresholds were selected to be inter-
mediate values in the tested range, 0.3 for Sufficient Improvement (SI) and 0.5 for Allowable Risk (AR).

SI and AR show promise, where CT was unable to out-
perform Early First. Results for SI and AR are consistent
for simulations that were run and evaluated on PSTNs vary-
ing across a number of identified features. Our analysis is
thus generalizable to many different kinds of input scenar-
ios.

SI has an impressive gap between its percent reduction
of success rate and communication with respect to DREA.
This difference means that the loss in algorithm success for
the amount it reschedules is relatively low, resulting in a
less costly trade-off between success rate and communi-
cation. Unfortunately, changing the SI threshold does not
appear to affect success rate or communication. Therefore,
threshold tuning within our explored range has a negligi-
ble effect on the performance of the algorithm. Future work
might consider exploring other values of the SI threshold
outside our range, particularly negative values.

While AR does not decrease communication as much as
SI, for certain thresholds it reaches much higher success
rates. Most importantly, AR exhibits a clear trade-off: as
threshold increases, amount of communication decreases
and success rate increases. Thus, AR is more tunable to be
appropriate for the situation in which it is used. In scenarios
where communication is especially costly, like in our UAV
example, lower thresholds are preferable. However, if com-
munication is only slightly limited, the AR threshold can be
increased to capture a larger success rate. Thus, AR is more
adjustable for various situations than SI.

As we can see, there is no clear winner between SI and
AR; each algorithm may be preferable in different situa-
tions. Moreover, in scenarios where communication cost is
negligible, DREA may be more suitable, and in scenarios
where communication cost is extreme, Early First might be
best. In any case, our contributions have successfully ex-
plored the trade-offs between success rate and communica-
tion in the region between DREA and static algorithms.

Future research could explore combining these algo-
rithms in an attempt to reduce scheduling further. SI might,
for example, be layered on top of AR. Such an algorithm
might vary its rescheduling frequency based on the risk
present in the system (like AR), and then only sends out

new schedules if they constitute a significant improvement
over the current one. SI itself might attain higher robustness
(probably accompanied by a higher rescheduling rate) by
rescheduling when new schedules constitute a significant
change in predicted success rate, rather than a significant
improvement in predicted success rate.

Another possible direction for future work is to test these
algorithms in other kinds of simulations. For instance, one
could run tests in a time-based simulation, as opposed to
an event-based simulation. It would be interesting to see
how DREA, or an adapted version of our algorithms, would
perform in this context. Finally, physics-based or real-world
simulations would yield results more directly relatable to
practical situations. This would create a stronger basis for
justifying the value of SI and AR, and defining the trade-off
between success rate and communication.
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