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Abstract

Flexibility is a useful and common metric for measuring the
amount of slack in a Simple Temporal Network (STN) so-
lution space. We extend this concept to specific schedules
within an STN’s solution space, developing a related notion
of durability that captures an individual schedule’s ability
to withstand disturbances and still remain valid. We iden-
tify practical sources of scheduling disturbances that motivate
the need for durable schedules, and create a geometrically-
inspired empirical model that enables testing a given sched-
ule’s ability to withstand these disturbances. We develop a
number of durability metrics and use these to characterize
and compute specific schedules that we expect to have high
durability. Using our model of disturbances, we show that our
durability metrics strongly predict a schedule’s resilience to
practical scheduling disturbances. We also demonstrate that
the schedules we identify as having high durability are up to
three times more resilient to disturbances than an arbitrarily
chosen schedule is.

Introduction
When carrying out a set of tasks, an autonomous system
is likely to face unforeseen disturbances. For instance, in a
factory setting, there “are many disturbances that can up-
set a plan, including machine failures, processing time de-
lays, rush orders, quality problems and unavailable material”
(Vieira, Herrmann, and Lin 2003). With many machines in-
volved, creating a new schedule from scratch every time a
disruption occurs is expensive, making it preferable to oper-
ate with schedules that reduce the need for active reschedul-
ing. Thus, the ability to prepare schedules that are durable—
schedules that do not easily break even when faced with un-
expected disturbances—is desirable.

Previous work has examined the notion of flexibility with
respect to scheduling problems defined as networks of tem-
poral constraints over events. (Hunsberger 2002; Policella
et al. 2009; Wilson et al. 2014; Huang et al. 2018). While
this work is useful in classifying the flexibility of solution
spaces, it does not provide information about particular
schedules within a given problem. In this sense, durability
can be viewed as flexibility defined on individual schedules.
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It is desirable in applications that require schedules that are
robust despite a dynamic environment and imperfect agents.

In this paper, we motivate the practical need for a mea-
sure of durability against scheduling disturbances and pro-
pose several durability metrics for measuring an individ-
ual schedule’s resistance to disturbances. We contribute two
new methods for finding schedules within an STN’s solution
space that are highly durable. We also develop a novel em-
pirical framework for modeling and testing a schedule’s abil-
ity to withstand practical scheduling disturbances. Finally,
we empirically validate that our new durability metrics are
highly predictive of how resilient a schedule is to practical,
real-world disturbances and also demonstrate that our meth-
ods for finding maximally durable schedules lead to sched-
ules that are up to three times more resilient to disturbances
than the average schedule.

Background: Simple Temporal Networks
A simple temporal network (STN) is a set of events T , with
events labeled t0, t1, t2, . . . , tn, coupled with a set of m con-
straints C where each constraint is of the form tj − ti ≤ cij
(Dechter, Meiri, and Pearl 1991). We consider the event t0
to be the zero timepoint, fixed to occur at time zero, with all
other events occurring relative to it.

A schedule is an assignment of times to each of the events
in the STN, and is a solution of the STN if all constraints
are satisfied. A common technique to compute solutions in-
volves representing an STN as a distance graph. This is a
weighted, directed graph, where each event ti is a node in
the graph while each constraint is represented by a directed
edge from ti to tj with weight cij . An STN can be made
minimal by applying a shortest-path algorithm to its distance
graph. In the resulting STN, the edge between two nodes is
the shortest path between them in the distance graph. The re-
sulting edge weights represent the exact range of times that
is allowed to elapse between each pair of events in the con-
straint graph and represents the space of possible solutions.

An example STN is shown in Figure 1. Here, each
edge/interval pair represents a pair of constraints between
two events. This STN describes a problem where two events
t1 and t2 must happen at least zero but no more than 10 min-
utes after t0, and t2 must happen no earlier than t1.

The solution space of an an STN can also be viewed as a
convex polytope (Huang et al. 2018), where the number of
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Figure 1: Distance graph representation of an example STN

events in an STN other than the zero timepoint specifies the
dimension of the polytope. We later use this geometric inter-
pretation of STNs to find points that we expect to have high
resistance to disturbance. The STN described previously is
shown geometrically in Figure 2.

In this view of an STN, the square bounded by the dashed
lines represents the solution space in R2 if there were no
constraint between the two events, whereas the shaded tri-
angle represents the true solution space after accounting for
that constraint. The constraints bounding t1 are the lines t1
= 0 and t1 = 10, the constraints bounding t2 are the lines t2
= 0 and t2 = 10, and the inter-event constraint is represented
by the diagonal line t2 = t1. Note that every point inside the
shaded triangle is a valid schedule for completing the tasks
t1 and t2, e.g., both tasks being executed as soon as possible
is represented as the point (0, 0) in the plot above.

Previous work has identified different notions of flexibil-
ity for STNs, all of which loosely attempt to capture the flex-
ibility to maneuver a schedule within its constraints. These
often attempt to aggregate the available slack moving events
around in an STN’s solution space. A survey and analyses
of available flexibility metrics are presented by Wilson et al.
(2014) and Huang et al. (2018).

Schedule Durability
If all uncertainty can be characterized prior to execution
(i.e., known unknowns), then an agent can simply compute a
strategy that represents its best response to control for this
uncertainty (e.g., Morris 2014,Lund et al. 2017). This, in
turn, obviates the need for additional flexibility in the net-
work. In practice, however, even within the STN there are
often additional sources of uncertainty that are not captured
by a formal model of temporal uncertainty. This motivates
the second type of uncertainty that acts as the motivating
focus for this paper, unanticipated scheduling disturbances
(i.e., unknown unknowns)—scheduling errors or disruptions
that arise or are realized during execution but may not be
accurately modeled or known prior to execution. The fact
that flexible STNs are generally preferred to inflexible ones
is an implicit recognition that such uncertainty exists and
points to the possibility of more precisely characterizing
how durable individual schedules are to such disturbances.

Figure 2: Geometric view of the STN from Figure 1

Such unforeseen scheduling disturbances may arise due to
scheduling imprecision based on agents’ limitations or based
on other inaccuracies in how faithfully an STN models the
real world.

We define the durability of a schedule as its ability to
withstand disruptions within the constraints of the original
STN. A durability metric should vary depending on the char-
acteristics of, and allow comparisons between, individual
schedules within an STN solution space. The geometric per-
spective of an STN solution space provides an intuitive way
to think about durability. Given a schedule, which is a sin-
gle point inside the STN solution space, its distance from
the boundaries provides a measure of the point’s ability to
handle disturbances while remaining within the STN con-
straints, and thus remaining a valid solution.

Durability Metrics
There are a number of different ways to measure the dis-
tance between a schedule and the boundary of the solution
space, which we consider a heuristic for durability. We pro-
pose two: minimum distance to a boundary and expected
distance to any boundary.

minDist The minDist metric computes the perpendicular
distance of a point to its nearest boundary as its estimate
of its durability. Note that the largest N -dimensional hyper-
sphere centered on this point will be tangent to the closest
boundary. Thus, this metric is equivalent to the radius of
that hypersphere, and can be considered a measure of the
worst case scenario for the schedule in terms of how much
disturbance the schedule can take. The metric ignores the
structure of the STN outside of the boundary closest to the
schedule and thus would underestimate the potential durabil-
ity of points which are close to one boundary but far away
from all others.

expDist The expDist metric attempts to estimate the ex-
pected distance of a schedule to all boundaries by computing
the geometric mean over the perpendicular distances to each
of the boundaries. This metric gives higher values for points
further away from the boundaries and approaches zero for
points close to any of the boundaries, aligning with the idea
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of durability as a point’s ability to remain within the bound-
aries despite disturbances. It serves as an approximation of
the expected case, given that it accounts for disturbances to-
wards every boundary equally.

Note that we can compute the perpendicular distance
from a schedule to a given constraint boundary by first cal-
culating, given a constraint of the form tj − ti ≤ cij ,
the amount of leeway in that constraint with the equation
dist ← cij − tj + ti. We then check if the constraint is in
between two events that are both not the initial event, t0. If
so, we divide the calculated leeway value by

√
2, since the

calculated value for two nonzero events will give the dis-
tance to a boundary, but not the perpendicular distance to
that boundary. To find the min/exp distance, then requires it-
erating over the O(n2) possible boundaries for a total com-
putational complexity of O(n2), where n is the number of
events.

Maximally Durable Schedules
Next, we describe two candidate approaches for finding
maximally durable schedules by approximating the the “cen-
ter” of the solution space.

Chebyshev Center The largest inscribed sphere that fits
within an N-dimensional polytope can be found in pseudo-
polynomial time by formulating the problem as a linear pro-
gram (Murty 2009). The center of this sphere, known as the
Chebyshev center, maximizes the minimum distance to any
boundary (i.e., the point with the highest minDist value).
Thus, the Chebyshev center optimizes for the minimum dis-
tance, allowing for robustness under worst case conditions.

Centroid In a polytope, in this case the STN solution
space, the centroid is defined as center of mass, which is
essentially the mean position of all the points in the poly-
tope. When disturbances of all kinds are equally likely, the
centroid is expected to be the most durable schedule. Com-
puting the centroid of an N-dimensional polytope is #P hard
(Rademacher 2007). However, we can approximate the cen-
troid by averaging randomly sampled schedules drawn from
a uniform distribution over the the STN solution space by us-
ing a Hit-and-Run sampling method as described by Bélisle,
Boneh, and Caron (1998). In practice, we found that 500
samples provided reasonable convergence.

Empirical Evaluation
In this section, we first present two new Monte-Carlo-style
methods for simulating how far a schedule can be perturbed
without being invalidated and then discuss how we use these
to empirically evaluate our durability metrics and candidates
for maximally durable schedules.1

Empirically Modeling Unknown Disturbances
We empirically model the fact that the STN models them-
selves may contain inaccuracies that are only discovered at
execution time by randomly selecting one of the edges of a

1All code and problem instances are available for download
from https://github.com/HEATlab/durability.

Figure 3: Illustration of our Random Shave model unknown
disturbances.

minimized STN and tightening its bound by one unit. We
coin this as a random shave because we can view this pro-
cess geometrically as selecting one of the surfaces of the
STN solution space and shaving it to be one unit tighter.
We repeat this process until the schedule violates any of the
(tightened) constraints (i.e., until the point representing the
schedule has fallen out of the polyhedron). We record the
number of tightened constraints it took to reach this point,
as depicted in Figure 3.

Each tightening of a constraint represents a possible mod-
eling inaccuracy (e.g., the arrival of a resource is delayed or
a deadline comes unexpectedly early). Thus, a schedule that,
on average, withstands a higher number of such changes
while remaining valid, is more durable to such errors in
the model. Although it is possible for model inaccuracies
to occur in the opposite direction and loosen the constraints,
as explored in previous work (Casanova, Pralet, and Lesire
2015; Planken, de Weerdt, and Yorke-Smith 2010), we focus
solely on tightening. In practice, we found that relaxing con-
straints, which increases the size of the solution space of the
STN, led to similar high-level trends, but served to obfuscate
trends by adding an additional source of noise.

Our next empirical model captures the fact that it can be
hard to predict exactly when and to what degree a scheduling
disturbance will occur. We model this using a random walk
that randomly assigns the proportion of the displacement
that takes place in a given dimension. Geometrically, if each
of the events happens at a different time, the point represent-
ing the schedule is displaced by a certain magnitude, which
we normalize to one standard unit so that we can measure the
total displacement. We accomplish this by choosing a vector
from a uniform distribution around an N -dimensional unit
sphere according to the method detailed by Muller (1959),
then using the coordinates of that N -dimensional unit vec-
tor as the displacements for each of our events. We also
considered versions that, e.g., perturbed individual events or
walked non-uniformly, but in practice found these did not
lead to qualitative differences compared to the random walk
described in this paper.

To evaluate a point’s ability to withstand execution impre-
cision, we repeat these displacements, checking each time
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Figure 4: Illustration of our Random Walk model unknown
disturbances.

whether the new point remains a valid schedule. This can
be visualized as a ”random walk”, which traces out a path
from the original starting point to a boundary of the STN’s
solution space as shown in Figure 4. As soon as it violates a
constraint, we record the number of displacements it took for
the point to do so. Next, we turn to measuring how suscep-
tible schedules are to unknowns disturbances and selecting
schedules that are maximally durable.

Empirical Setup
Our empirical testing relies on generating STNs based on
a variation of Hunsberger’s generation method (Hunsberger
2002). Our generator takes as input a number of events, n,
and an upper limit on constraint bounds, B. For each of the
n2 pairs of events, i and j, we set cij to 0 when i = j
and to a uniformly-chosen value between 0 and B other-
wise. The resulting network is checked for feasibility and
is discarded and regenerated from scratch if infeasible. We
generated 30,000 randomly structured STNs in this way, for
n ∈ {2, 3, . . . , 10}2 and B = 50.

Unless otherwise noted, all values that we report repre-
sent the average across 100 randomly chosen schedules in
each of our 30,000 randomly-generated STNs. To validate
our flexibility metrics, we use our empirical random shave
and random walk models, as discussed previously. Both of
these models are Monte Carlo simulations that report the
total number of perturbations that a schedule survives. For
both of these measures, we report the average across 100
simulations.

Empirical Evaluation of Durability Metrics First, we
explore correlation between our metrics and resistance to
disturbances for schedules within a given STN. For each of
the 30,000 random STN instances that we generate, we uni-
formly sample the solution space (using the same Hit-and-
Run algorithm we used for approximating the centroid) to
generate 100 feasible schedules within that STN and mea-
sure how durable each schedule is using our two empirical

2We considered scaling to larger n, but found that for n > 20
we encountered an inverse curse-of-dimensionality, where the solu-
tion spaces degenerated as an artifact of the random STN generator

Any STN
minDist expDist Flex Metric

Random Shave 0.790 0.762 —
Random Walk 0.873 0.795 —

Table 1: Average Pearson Correlation Coefficients for sched-
ules within STN instances

models of scheduling disturbances. For each STN instance,
we compute how predictive (using a Pearson correlation co-
efficient) each of our durability metrics was with how long
the schedule resisted our empirical model of scheduling dis-
turbances.

Both the minDist and expDist durability metrics have
strong positive correlations with resistance to both types of
disturbances. This shows that they are good measures of how
much execution imprecision and how many model inaccura-
cies a schedule can withstand before being rendered invalid.
It is not surprising that these metrics, which are both mea-
sures of the distance to boundaries, would be strongly cor-
related with the measures of durability from our empirical
models of disturbances. Perhaps more surprisingly, we also
tested a third metric, maxDist, which computed the maxi-
mum distance to a boundary, but this proved uselessly op-
timistic, yielding negative correlations. Note that because
flexibility depends only on the constraints of the original
problem as a whole, and not on characteristics of individ-
ual solutions to the problem, a flexibility’s metric does not
change within a given STN, and thus yields no correlation
to a schedule’s resilience to disturbances. However, we sus-
pect flexibility metrics would be superior at evaluating the
flexibility to actively dispatch schedules by acting as a guide
for agents making online scheduling decisions. In summary,
both the minDist and expDist proved highly durable to sim-
ulated disturbances, and overall, minDist had slightly better
performance.

Empirical Performance of STN Centers
In order to test whether our candidates for durable sched-
ules indeed have high resistance to disturbances, we calcu-
lated the durability metric values for each of these centers in
every STN and compared it against the average of the val-
ues for 100 random points in the STN. We then repeated
the same process for both the RS and RW measures of re-
sistance to disturbances. The two candidates for maximally
durable schedules that we identified, the Chebyshev center
and the centroid, both yielded higher durability metric val-
ues and resistance to RS and RW models of disturbances
than randomly selected schedules in expectation. Both can-
didates showed consistent, robust advantages over randomly
selected schedules. These advantages persisted across every
STN instance that we tested.

Table 2 shows the ratio of each of our candidate cen-
ters compared to the expected performance of a randomly
selected schedule across the minDist durability metric (our
best performing durability metric) and also resistance to RS
and RW disturbances. In expectation, our centers were more
robust than an arbitrarily chosen schedule by an average of
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Random Random
minDist Shave Walk

Chebyshev 4.69 2.70 3.37
Centroid 3.42 3.87 3.45

Table 2: Center Performance Relative to Random Schedules

306% according to minDist, 229% according to RS, and
241% according to RW. These results strongly point towards
the usefulness of using durability metrics in choosing target
schedules that are resistant to unknown disturbances.

We were surprised at how remarkably consistent both cen-
ter candidates performed across our various measures of
durability—Chebyshev outpaced arbitrary schedules by an
average of 259% and Centroid by 258%. Further, no center
consistently dominated the other, in fact, each had at least
one metric by which they would be deemed the best.

This points to a larger phenomenon—any schedule that
keeps a safe distance from boundaries seems to perform
reasonably well. In fact, we explored a variety of different
STNs properties (e.g., dimensional, structure, etc.) looking
for types of scenarios where one center would outperform
others, and found no clear winners. This affords agents with
the opportunity to optimize for other objectives when select-
ing for schedules as long as they are playing a safe distance
from the edge.

Discussion
In this paper, we extend the notion of flexibility for Sim-
ple Temporal Networks to schedules within these networks
by introducing a new metric called schedule durability. We
define the notion of schedule durability using a geomet-
ric interpretation of STNs, whereby a schedule’s distance
to the network’s boundaries approximates its resilience to-
wards unforeseen disturbances. This motivates a number of
durability metrics relying on a schedule’s distance to bound-
aries. We also identify two geometric centers within a STN’s
solution space that look to provide optimal resilience against
unknown disturbances. We practically motivate the presence
of real-world scheduling disturbances and translate these to
Monte Carlo style tools for empirically simulating and eval-
uating a schedule’s resistance to such disturbances. Our em-
pirical analysis show that durability metrics provides use-
ful, new information when assessing which schedule is most
likely to resist unknown disturbances by demonstrating they
are strong predictors of the performance of our Monte Carlo
models of resistance to disturbances. We also demonstrated
that geometric centers provide three times more resistance to
unforeseen disturbances than arbitrarily chosen schedules.
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