
Simple Temporal Networks for Improvisational Teamwork

Malia Morgan, Julianna Schalkwyk, Huaxiaoyue Wang, Hannah Davalos, Ryan Martinez, Vibha
Rohilla, James Boerkoel

Harvey Mudd College, Claremont, CA, USA
{mgmorgan, jschalkwyk, yukwang, hdavalos, rmmartinez, vrohilla, boerkoel}@g.hmc.edu

Abstract

When communication between teammates is limited to ob-
servations of each other’s actions, agents may need to im-
provise to stay coordinated. Unfortunately, current methods
inadequately capture the uncertainty introduced by a lack of
direct communication. This paper augments existing frame-
works to introduce Simple Temporal Networks for Improvi-
sational Teamwork (STN-IT) — a formulation that captures
both the temporal dependencies and uncertainties between
agents who need to coordinate but lack reliable communica-
tion. We define the notion of strong controllability for STN-
ITs, which establishes a static scheduling strategy for control-
lable agents that produces a consistent team schedule, as long
as non-communicative teammates act within known problem
constraints. We provide both an exact and approximate ap-
proach for finding strongly controllable schedules, empiri-
cally demonstrate the trade-offs between these approaches on
benchmarks of STN-ITs, and show analytically that the exact
method is correct.

Introduction
In a team where agents must work together, they would ide-
ally be able to either pre-negotiate a coordination strategy
or communicate one in real-time. However, there may be
situations, such as ad-hoc teams, where agents must find a
way to work together despite not being able to communicate
directly. In such improvisational teams, agents must coordi-
nate their tasks by only observing already-executed actions.

Existing work in multi-agent coordination either relies
on solving the problem centrally or requiring communica-
tion before or during execution (Boerkoel and Durfee 2013;
Boerkoel et al. 2013). Other work in human-robot teams al-
lows the robots to dynamically recompute their plans in re-
sponse to the humans’ actions to deal with their uncertainty
(Castro et al. 2017; Hoffman and Breazeal 2007). By con-
trast, we assume an agent must schedule its actions before
execution and account for its teammates without negotia-
tion. In addition, current work in temporal controllability
places assumptions on the forms of uncertainty that a team-
mate could introduce (Vidal and Fargier 1999; Hunsberger
2009), which are restrictions we attempt to avoid.

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

U2U1

C1 C2C0

U0[0, 10]

[0, 5]

[1, 3]
[2, 8]

[4, 6]

[0, 5]

[0, 11]

[2, 8]

[4, 5]

Figure 1: Distance graph of our STN-IT example.

This paper introduces the Simple Temporal Network for
Improvisational Teamwork (STN-IT) to account for tempo-
ral planning situations where rational agents must coordinate
their actions to complete a task but can only do so by observ-
ing each other’s actions. We characterize strong controllabil-
ity for STN-ITs and discuss the challenges for establishing
strong controllability in STN-ITs. We present both an exact,
Mixed Integer Linear Program for finding strongly control-
lable solutions to an STN-IT in a sound and complete man-
ner and an efficient Linear-Programming-based approximate
approach. Then, we empirically compare our approaches
both across both a new and existing benchmarks of STN-ITs
for efficiency and accuracy.

Background
As a motivating example used throughout this paper, con-
sider a scenario where a robot and a novel human teammate
are assigned to pack a box together (Figure 1). Both have
packed similar boxes before and are aware of the steps and
timing constraints. The robot, agent C, and human, agent U ,
move to the table, and each press a button to start the pro-
cess. It takes the human between 0 and 10 seconds to get
there (U0), and robot C between 0 to 5 seconds (C0). A box
then enters on a conveyor belt, giving the robot between 4
and 5 seconds to remove it and place it on the table after
they press the button and 2 to 8 seconds after the human
presses their button (C1). From there, the human will take
between 1 and 3 seconds to place the packing material in it
(U1). The robot can then place the item 0 to 5 seconds later
(C2). Once the robot has placed the item, the human will
take between 2 and 8 seconds to seal the box (U2). However,
to allow enough time to obtain supplies, the human has the

Proceedings of the Thirty-Second International Conference on Automated Planning and Scheduling (ICAPS 2022)

261



additional constraint that their second action (U2) must oc-
cur between 4 and 6 seconds after their first action (U1). The
box must be fully packed within 11 seconds.

In this section, we introduce how we can represent the
structure of this problem using existing temporal network
formulations and discuss how current representations are in-
adequate in capturing the robot’s uncertainty introduced by
the lack of direct communication with its human teammate.

Simple Temporal Networks
A Simple Temporal Network (STN) is a graph that consists
of a set of timepoints T , constraints between those time-
points C, and a “zero” timepoint z that acts as a reference
point and is assigned the time 0 (Deichter, Meiri, and Pearl
1991). A constraint in C is represented as tj − ti ≤ cij
for timepoints ti, tj ∈ T . When ti − tj ≤ cji also ex-
ists, then −cji ≤ tj − ti ≤ cij , which we rewrite as
tj − ti ∈ [−cji, cij ]. An STN solution, or schedule, is
an assignment of the timepoints in T such that all con-
straints in C are satisfied (Deichter, Meiri, and Pearl 1991).
As shown in Figure 1, an STN can be represented graphi-
cally, where each timepoint appears as a node and each con-
straint tj − ti ∈ [−cji, cij ] appears as a directed edge from
ti to tj with label [−cji, cij ]. The direction of the edges
is based on a partial ordering of the nodes with respect to
time. Constraints involving the zero timepoint with the form
tj − z ∈ [−cjz, czj ] are represented as self-loops with label
[−cjz, czj ]. Distance graphs, shown in Figure 2, are helpful
in determining a solution because they can be used to calcu-
late implicit constraints between two timepoints using short-
est path algorithms. Maintaining distance graphs can also be
useful in guiding scheduling decisions during dispatch, the
process of the agent deciding when to execute its events.

Multi-agent STN
A Multi-agent Simple Temporal Network (MaSTN), M , con-
sists of multiple local STNs for each agent along with global
constraints CM that span between agents’ local STNs. In a
MaSTN involving a set of n agents, A, we can define each
agent i’s local STN as Si = 〈z, T i, Ci〉. Then, an MaSTN is
defined M = 〈A,CM 〉, where A = 〈S1, . . . , Sn〉 and CM

is the set of global constraints. We set z as the shared zero
timepoint across each agent’s local STN to ensure a com-
mon reference point. Furthermore, agent i is responsible for
assigning times to the timepoints T i (Boerkoel and Durfee
2013). Figure 1 is an example of a MaSTN involving two
agents U and C. A MaSTN is decoupled if every combina-
tion of solutions of the n local agents’ STNs is a solution to
the original MaSTN. Generally, decoupling a MaSTN places
additional constraints onto each agent to embed the global
constraints. For instance, the example STN could be decou-
pled if we assigned C0 = [1, 3], U0 = [0, 4], C1 = [6, 6],
U1 = [7, 9], C2 = [7, 9], and U2 = [11, 11]. However, de-
coupling assumes agents can negotiate a strategy before ex-
ecution, which is not the case in improvisational teams.

STN with Uncertainty
A Simple Temporal Network with Uncertainty (STNU) is
an STN with the set of events, T , partitioned into T c, con-

U2U1

C1 C2C0

U0[0, 4]

[0, 2]

[4, 6]

[5, 7]

[9, 11]

[5, 9]

[−2, 3]

[3, 7]

[7, 11]

[3, 9][2, 6]

[4, 5]

[5, 7]

[5, 9]

[5, 11]

[1, 3]

[1, 5]

[5, 7]
[2, 6]

[4, 6]

[0, 4]

Figure 2: Distance graph of example problem after running
Floyd-Warshall

trollable events, and Tu, uncontrollable events (Vidal and
Fargier 1999). While events in T c are decisions made by
an agent in terms of assigning the timepoints, those in Tu

are decided by “Nature,” an external force not controlled by
the agent and realized during execution. Each uncontrollable
event, ti ∈ Tu, is associated with a unique contingent con-
straint of the form ti − tj ∈ [lb, ub], where 0 < lb < ub
and tj ∈ T c. Once tj is executed, the value of ti is received
from Nature, which determines how long after tj that ti will
occur by sampling the interval [lb, ub]. Thus, C can be par-
titioned into contingent constraints (CC), described above,
and requirement constraints (CR), which are normal STN
constraints (Hunsberger 2009).

An STNU is controllable when there exists a strategy to
work around the uncertainty in the problem. Strong control-
lability occurs when an agent can schedule its controllable
events pre-dispatch in a way that guarantees to be consistent
with every realization of the uncontrollable timepoints. The
STNU is dynamically controllable when there is a real-time
strategy for scheduling controllable events that is guaranteed
to work while only requiring information about past events
(Vidal and Fargier 1999).

The robot in our running example is unsure of exactly
when the human will execute their events, drawn in red in
Figure 1. However, this problem cannot be captured as an
STNU, since it violates multiple STNU assumptions. For
instance, U2 has three incoming contingent edges, which vi-
olates the assumption that uncontrollable timepoints can be
the target of at most one contingent edge. Further, one of
the incoming constraints has a lower bound of 0, which vio-
lates the constraint that contingent edges must strictly order
events (i.e., 0 < lb < ub).

Additionally, there is a difference in the nature of the un-
certainty between STNUs and our running example. While
STNUs characterize which events and constraints are un-
controllable/contingent (e.g., due to the inherent external
sources of uncertainty), we need a new formulation that
is capable of characterizing entire agents as uncontrollable

262



(e.g., due to a lack of communication). Said another way,
in STNUs, uncertainty is due to unknown, exogenous pro-
cesses deciding parts of the schedule. In contrast, in our ex-
ample, the robot knows that the human will determine their
own schedule but has no way to coordinate and so is uncer-
tain about which schedule the human will choose.

STN for Improvisational Teamwork
Like in past MaSTN work, we will assume each agent acting
within an Improvisational Team is responsible for schedul-
ing its local events in a way that is consistent with the global
problem. However, unlike past MaSTN work, we do not as-
sume that all agents can communicate to coordinate their
local solutions. Instead, we designate a set of agents as con-
trollable in the sense that a scheduling algorithm can com-
municate and coordinate solutions across these agents’ sub-
problems. We designate the set of remaining agents, with
which we cannot coordinate as uncontrollable, since the
scheduling algorithm is uncertain about which temporal plan
they will choose.

We define an STN for Improvisational Teamwork (STN-
IT) as a MaSTN where the set of agents, A, is partitioned
between a set of controllable agents, AC , and uncontrollable
agents, AU , A = 〈AC , AU 〉. That is, an STN-IT is defined
asM = 〈AC , AU , CM 〉. Notably, our formulation does not
designate specific edges or events as contingent or uncon-
trollable, just which type of agent is responsible for them.

While we assume no ability for a scheduling algorithm
determining the controllable agents’ schedule to control or
communicate with agents in AU directly, we do make a lim-
ited set of assumptions for how all agents will behave.

1. Problem Observability: Agents can observe and reason
about the global STN-IT,M.

2. Event Observability: Agents can observe when all
events occur as they are executed.

3. Execution Consistency: Agents will choose an execu-
tion strategy that is consistent with all problem con-
straints and event observations once they occur.

These assumptions provide essential information about
how the set of uncontrollable agents will behave in decid-
ing their schedules. We acknowledge that these assumptions
may limit the types of agents with which we can achieve
improvisational teamwork. For instance, these assumptions
may apply better to an ad-hoc robot teammate than to a hu-
man teammate (e.g., humans are generally known to be irra-
tional). We elaborate on ideas for relaxing these assumptions
in our discussion of future work.

In the remainder of this paper, we assume a single agent of
each type for ease of composition. We believe most methods
will extend to teams of agents where agents of the same type
can coordinate with each other, but expanding this work to
more general teams is left as future work.

Order of Events
Running the Floyd-Warshall algorithm on the STN-IT’s dis-
tance graph reveals all implicit constraints (Figure 2). This
naturally imposes an order between most, but not all, pairs

of events. Consider two arbitrary events i and j, where
we assume w.l.o.g. that −cji and cij are the lower and
upper bounds on the time that elapses between i and j:
tj − ti ∈ [−cji, cij ]. This pair will have one of two rela-
tionships, which we define next.

Case 1: precedes (−cji, cij ≥ 0) The time differences be-
tween i and j are non-negative, so event i must happen ear-
lier than j. We define i precedes j (i → j), which implies
that j’s agent has the responsibility to satisfy the constraints
between them and account for how i is executed. For exam-
ple, in Figure 2, the edge from C0 to C1 has the weights
[4, 5], so C0 precedes C1.

Notice that Case 1 also includes edges with [0, 0] weights,
which require i and j to be fully synchronous. In this case,
if i and j belong to the same agent, we define an arbitrary
ordering. If i and j belong to different agents, we assume
that the controllable node precedes the uncontrollable node,
which places the onus on the uncontrollable agent to observe
and synchronize its event. In practice, exact synchrony may
be impossible, so practitioners may choose to replace syn-
chronous constraints with ones with more built-in tolerance.

Case 2: unordered (−cji < 0, cij > 0) Case 2 occurs
when there is no clear precedence order between nodes,
which we define as unordered (i.e., i ↔ j). These two
nodes share a conditional responsibility that is triggered by
whichever one acts first. While both nodes remain unexe-
cuted, neither agent needs to worry about satisfying the con-
straints between them. However, as soon as one agent exe-
cutes, the unordered edge gets converted to an ordered one
with one node preceding the other (Case 1). Specifically, if i
executes first, j should take the responsibility and treat their
edges as if −cji = 0 and vice versa. In Figure 2, the dotted
edge from C0 to U0 has weights [−2, 3], which is equivalent
to a directed edge from U0 to C0 with weights [−3, 2]. So,
if U0 executes first, C0 must happen within 3 units of time,
else U0 must happen within 2 units of time after C0.

Strong Controllability of an STN-IT
We formally define an STN-IT to be strongly controllable if
we can assign specific times to the controllable timepoints in
a way that is guaranteed to work with any consistent, dynam-
ically determined realization of uncontrollable timepoints.
That is, we assume uncontrollable timepoints will be exe-
cuted in a way that is consistent with observations about the
events that precede them. More precisely, if we denote the
space of solutions for controllable agents as SC and uncon-
trollable agents as SU , then a strongly controllable STN-IT
solution is a schedule to the controllable agent’s problem,
sC ∈ SC such that sC is guaranteed to be consistent with
all solutions SUsC ⊆ S

U , where SUsC represents the subset of
SU that is consistent with real-time observations of sC .

Strong controllability takes on a different meaning within
an STN-IT than in an STNU. In STNUs, ‘nature’ is agnostic
to information about the temporal network when deciding
contingent edges. Thus, contingent edges are independently
sampled using some underlying, unknown distribution. This
implies that agents must account for the entire cross-product
of all possible realizations of contingent edges. As described

263



in (Akmal et al. 2020), this forms a realization space that can
be thought of as a hyperrectangle, with each contingent edge
adding a new dimension. In STN-ITs, on the other hand, the
uncertainty is over which temporal plan will be chosen by
the other agent. Therefore, we need to be robust to just the
uncontrollable agent’s space of viable temporal plans. Fur-
ther, our assumptions mean that controllable agents have a
way to influence the uncontrollable agent’s space of viable
temporal plans through observations (e.g., the robot could
opt to make the human wait before handing over a tool). This
tightens the problem and allows for additional solutions that
an STNU might not reveal.

Our assumptions mean that the uncontrollable agent can
both reason about the problem constraints and dynamically
respond to observations involving a constraint from the con-
trollable agent to the uncontrollable agent that precedes
one of its events. However, when one of the uncontrol-
lable agent’s events precedes one of the controllable agent’s
events, we do not assume that the uncontrollable agent can
anticipate any effects other than those naturally implied by
the original problem constraints. Once the distance graph
has been computed, the uncontrollable agent only needs to
know about its timepoints and any incoming or unordered
edges involved in them, as highlighted in red in Figure 2.
The only additional information we assume it has access to
are real-time observations of the controllable agent during
execution. Even with our assumptions, finding a strongly
controllable STN-IT is non-trivial—there may be many lo-
cal schedules that correspond to a global solution, but since
agents cannot communicate, the controllable agent must rea-
son over the uncontrollable agent’s entire solution space.

Approaches for STN-IT Strong Controllability
This section explores two methods for finding a strongly
controllable solution to an STN-IT. The first uses a Mixed
Integer Linear Program (MILP) to find an exact solution.
However, MILP’s are generally NP-Hard to solve, so we
provide a method for efficiently finding an approximate so-
lution using a Linear Program (LP). Note that the STN-IT
assumptions, particularly problem observability, mean that
the controllable agent can access and reason about full prob-
lem using a centralized algorithm, but agents cannot access
other agents’ reasoning until the decision becomes apparent
through observation.

An Exact Algorithm: STN-IT-SC-MILP
We introduce a method for determining a strongly control-
lable solution to an STN-IT using a Mixed Integer Linear
Program (MILP)1. We also adopt notation from Wilson et al.
(2014), which introduces decision variables t−i and t+i that
serve as shorthands for the lower and upper bounds on the
constraint between ti and the zero timepoint. Thus, if the
STN-IT is strongly controllable, our MILP will return as-
signments to decision variables t−i and t+i that specify the
range of times each event can occur for that particular con-
trollable solution.

1We express constraints using min/max, which Gurobi converts
into a linearized MILP (Gurobi 2021; pp. 623-4)

STN-IT-SC-MILP:

t+j = t−j ∀tj ∈ T c (1)

t+i − t−j ≤ cji ∀i, j | tj ∈ T c, i→ j (2)

t+j − t−i ≤ cij ∀i, j | tj ∈ T c, j 9 i (3)

t−j ≤ t+j ∀tj ∈ Tu (4)

t−j = max
i|i→j
{t−i − cji} ∀tj ∈ Tu (5)

t+j = min
i|j9i
{t+i + cij} ∀tj ∈ Tu (6)

STN-IT-SC-MILP fully assigns all controllable time-
points by enforcing t+j = t−j (Eq. 1) for all controllable
timepoints. Controllable timepoints are assigned to be con-
sistent with the extreme values of any preceding uncontrol-
lable timepoints in Eqs. 2-3. Eq. 2 ensures that tj’s lower
bound is consistent with full range of times for all timepoints
ti that precede it (i→ j), while Eq. 3 does the same for tj’s
upper bound. Note that the notation j 9 i in Eq. 3 is short
for the cases when i precedes or is unordered with j, and
handles the case when uncontrollable agent acts first in an
unordered edge. Because we assign specific times to con-
trollable timepoints, Eqs. 2-3 also naturally enforce all of
the controllable agent’s internal constraints.

At the same time, the MILP enforces that each uncontrol-
lable timepoint tj maintains the full range of possible times
that ensures strong controllability, with Eq. 4 ensuring the
intervals are well-formed. Because strong controllability as-
sumes uncontrollable agents can only adjust to events that
have already occurred, our MILP adjusts the ranges of un-
controllable timepoints only in response to the timepoints ti
that precede tj . Note that the lower bound of the constraint
from ti to tj is ti − tj ≤ cji, which can be rewritten as
tj ≥ ti − cji. Then, the smallest adjustment we can make to
tj’s lower bound (t−j ) while ensuring tj ≥ ti − cji holds for
all ti that precede tj is exactly maxi|i→j{t−i − cji}, which
is achieved by Eq. 5. Similarly, Eq. 6 achieves the necessary
updates to tj’s upper bound. Finally, unordered constraints
only need to be used to update the upper bound of tj , so
they are included in Eq. 6 but not 5. Directly assigning each
controllable timepoint randomly within its allowed bounds
could remove solutions that may optimize secondary goals,
such as flexibility or makespan. Finally, while MILPs tra-
ditionally have an objective function, none is needed in this
case. An objective function could optionally be added to pri-
oritize among solutions when more than one exists.

Example Execution We now step through how our MILP
would apply to the distance graph of our running example
displayed in Figure 2 with the output shown as Figure 3.
While for ease of explanation, we discuss the MILP as oper-
ating sequentially on each timepoint, in reality, the fact that
the MILP considers all constraints simultaneously is essen-
tial in its ability to find strongly controllable solutions. First,
since C0 has no timepoints that precede it, the MILP only
has to assure that C0’s assignment is consistent with both its
original range of times and the unordered constraint shared
with U0 (Eq. 3). These two constraints enforce C0 to execute

264



U2U1

C1 C2C0

U0[0, 3]

[0, 0] [5, 5]

[6, 7]

[11, 11]

[9, 9]

[3, 7]

[7, 11]

[4, 6]

[0, 3] [2, 6][1, 3]
[2, 6] [0, 4]

Figure 3: Strongly controllable solution to our example

within the range of [0, 2], so the MILP happens to assign C0

to 0. With C0 = 0, the MILP can now effectively treat the
originally unordered edge as one with C0 preceding U0 and
label [0, 3], which it does naturally by only concerning it-
self with the upper bound on the constraint from C0 to U0

(Eq. 6). Thus, our MILP updates the upper bound of U0 to 3.
Note that during actual execution, agent U will start off be-
lieving it has until time 4 to complete U0 as shown in Figure
2. However, as soon as it observes that C0 happens at time
0, it will update its executable range to be [0,3], as captured
in Figure 3.

Next, the MILP considers that C1 (and similarly C2) must
be able to account for the full range values that agent U
might consider for completing U0 without knowing its value
in advance. Since agent U0 could choose to execute as U0 as
early as 0, we know the latest C1 can occur is 0+6 = 6 (Eq.
3), and similarly, since the latest U0 could occur is 3, the
earliest C1 can take place is 3 + 2 = 5 (Eq. 2). Ultimately,
the MILP decides to assign C1 = 5. Finally, when adjusting
U1’s range of values (and similarly U2), the MILP consid-
ers U1’s current range [5, 7], along with the ranges implied
by both incoming edges (e.g., the edge from U0, which im-
plies a range for U1 of [0, 3] + [3, 7] = [3, 10], and the edge
from C1, which implies a range of [5, 5] + [1, 3] = [6, 8].)
Eqs. 5-6 then take the intersection of these three to obtain
U1’s new range U1 : [5, 7] ∪ [3, 10] ∪ [6, 8] = [6, 7]. Again,
before actual execution, agent U may not realize it cannot
start U1 before time 6, but it will realize it by time 5 when
it observes C1 has occurred. As illustrated in Figure 3, the
MILP ends up using the same logic to constrain C2 = [9, 9]
and U2 = [11, 11] to give us our final, strongly controllable
solution.

Correctness of STN-IT-SC-MILP
After defining our MILP, we argue that our proposed MILP
is complete and sound by presenting two theorems and the
corresponding proof sketches2.

Theorem 1. STN-IT-SC-MILP will return a strongly con-
trollable schedule to an STN-IT any time one exists.

2Full proofs available upon request.

Proof (Sketch). Eq. 4 ensures a valid interval of times for
each timepoint. By using proof by contradiction, we must
show that Eqs. 5-6 set each uncontrollable timepoint’s t−j
and t+j while assuring that the corresponding interval retains
the full range of time that is consistent with all events that
precede it, as required by the definition of strong controlla-
bility.

We assume that there exists at least one uncontrollable
timepoint tk, where its earliest possible time t−k does not
satisfy Eq. 5 (the proof for the upper bound t+k follows sym-
metrically). However, t−k cannot be less than maxi|i→k{t−i −
cki}, since t−k would then be inconsistent with respect to
its constraints with at least one timepoint ti that precedes
it, which violates our assumption. Similarly, t−k cannot be
greater than maxi|i→k{t−i − cki}, since that would contra-
dict the assumption that we are maintaining the largest pos-
sible interval for t−k . Thus, Eq. 5 (and symmetrically Eq. 6)
must hold for all uncontrollable timepoints.

Next, we consider the controllable timepoints. If an STN-
IT is strongly controllable, there must exist a fully assigned
schedule for the controllable timepoints that will work re-
gardless of how the uncontrollable timepoints are chosen
and how the controllable timepoints can be assigned (Eq.
1). Similar to Eqs. 5-6, we can argue by contradiction that
any strongly controllable solution to an STN-IT must satisfy
Eqs. 2-3. Assume that there is a strongly controllable solu-
tion that violates either Eq. 2 or Eq. 3. However, if the two
timepoints involved in the violation are controllable, not sat-
isfying either Eq. 2 or 3 would imply violating the original
problem’s constraint between controllable variables (since
t−j = t+j ∀tj ∈ T c), which contradicts our assumption of
a strongly controllable solution. Similarly, if the other time-
point involved is uncontrollable, we can show that a viola-
tion of Eq. 2 or 3 would imply conflicts with either the lower
or upper bound on the full range of times for that uncontrol-
lable timepoint, thereby contradicting our assumption.

Therefore, any strongly controllable STN-IT will yield
an assignment of controllable timepoints consistent with the
constraints of our STN-IT-SC-MILP.

Theorem 2. Any assignment of t−i and t+i that satisfies the
constraints of the STN-IT-SC-MILP results in a strongly con-
trollable solution to the original STN-IT.

Proof (Sketch). First, consider any assignment of t−j and t+j
to the controllable timepoints that satisfies the MILP. From
Eqs. 2-3, we see that for any timepoint ti that precedes a
controllable timepoint tj , tj will happen no earlier than ti’s
latest time plus the lower bound between them (−cji) and
no later than ti’s earliest time plus the upper bound between
them (cij). Thus, tj is guaranteed to be consistent with ti.

Now consider any assignment of t−j and t+j to the uncon-
trollable timepoints that satisfies the MILP. To start, we con-
sider the relationship between an uncontrollable timepoint
tj and an arbitrary timepoint ti that precedes or is unordered
with tj (j 9 i). When ti happens maximally early, tj can
happen no later than t−i plus the upper bound between them,

265



which gives us (a): t−j ≤ t−i + cij . When ti happens max-
imally late, tj can happen no earlier than t+i plus the lower
bound between them, which gives us (b): t+j ≥ t+i − cji. If
ti is controllable, we can derive (a) and (b) directly from the
MILP.

When ti is uncontrollable, we cannot do so. Instead, we
use proof by strong induction on n, the number of uncon-
trollable timepoints in the STN-IT, to prove that (a) and (b)
hold between any pair of uncontrollable timepoints. When
there is only one uncontrollable timepoint, its local problem
must be consistent and we have already shown that (a) and
(b) hold between controllable and uncontrollable timepoints.
Hence, the base case holds. For our inductive hypothesis, we
assume that for every STN-IT that has n or fewer uncontrol-
lable timepoints, equations (a) and (b) hold for all uncontrol-
lable timepoints ti that precedes or is unordered with other
uncontrollable nodes tj (j 9 i). Then we use proof by con-
tradiction to prove the inductive hypothesis holds for n + 1
uncontrollable timepoints.

Consider when (a) does not hold in an STN-IT with n+1
uncontrollable timepoints. There must be at least one uncon-
trollable timepoint that does not enable any other uncontrol-
lable timepoint. Let’s call it the maximal timepoint tm. In the
STN-IT without tm, (a) does not fail between any of the re-
maining uncontrollable timepoints by the inductive hypoth-
esis so it must fail between tm and another uncontrollable
timepoint ti. Because (a) has failed between tm and ti, time-
point ti cannot dominate the maximum of MILP constraint
(1), so another timepoint tk must do so. When investigating
tk’s relationship to ti, we get cik > cim + cmk, which im-
plies that there is a shorter path from ti to tk through tm.
This result contradicts the assumption that we ran Floyd-
Warshall. Hence, (a) must hold between all uncontrollable
timepoints in the STN-IT with n + 1 uncontrollable time-
points. We can use the same reasoning to prove that (b) must
also hold.

Overall, we have shown that every solution to the MILP
results in a strongly controllable solution to the STN-IT.
Thus, our MILP is sound.

An Approximate Algorithm—STN-IT-SC-LP
Although our MILP can correctly determine whether an
STN-IT is strongly controllable, because MILP formula-
tions are generally NP-Hard, this approach may be in-
tractable for some problems. Thus, we also developed a lin-
ear program (LP) version of the algorithm that approximates
the MILP result. Our basic approach is to replace equa-
tions that contained the non-linear max/min functions that
requires formulation as a MILP with linear constraints by
swapping Eqs. 5-6 for 7-8:

t−j ≥ t−i − cji ∀i, j | tj ∈ Tu, i→ j (7)

t+j ≤ t+i + cij ∀i, j | tj ∈ Tu, j 9 i (8)

Next, in order to encourage t−j and t+j to approximate
their respective maximum and minimum value, we add an
objective that maximizes the sum of uncontrollable time-
point’s time interval (t+j − t−j ) relative to its time initial in-

terval, czj + cjz , computed by Floyd-Warshall:

maximize
∑

tj∈Tu

ωj ·
t+j − t−j
czj + cjz

In addition, the weight ωj allows us to explore different
ways of relatively weighting the uncontrollable timepoints.
We have determined that giving uncontrollable timepoints
that are earlier or have shorter durations higher weights has
a small, but positive impact. Specifically, if a timepoint tj
is the xth earliest one among y uncontrollable timepoints, it
will receive a weight of ωj = y−x

y(1+y)
2

. In summary, the ap-

proximate LP weights early timepoints and timepoints with
short durations higher than late, long ones.

Empirical Evaluation
We evaluate our algorithms against three benchmarks. The
first two are the original MaSTN benchmarks published by
Boerkoel et al. (2013). The WS benchmark was generated to
mimic a realistic a multiagent factory scheduling domain.
BDH benchmark was generated using Boerkoel and Dur-
fee (2013) multiagent adaptation of Hunsberger (2002) ran-
dom STN generator. Though these benchmarks had up to
32 agents, we converted them to two agent problems by
combining all even numbered agents into the controllable
agent and the rest into the uncontrollable. However, while
these benchmarks were useful in evaluating how our algo-
rithms scaled, our initial investigations suggested they were
relatively loosely coupled between agents and often proved
solvable by the naı̈ve algorithms that we explain later.

Thus, we decided to generate additional, more interest-
ing STN-IT instances that require greater coordination and
are more difficult to resolve by further adapting Boerkoel
and Durfee (2013)’s MaSTN benchmark generator. Like the
original generator, ours first randomly assigns some tasks to
the controllable and uncontrollable agents, each with start
and end timepoints and bounds on its duration. We modified
how we define constraints between tasks to create more in-
teresting STN-IT examples requiring greater coordination.
Specifically, each constraint has a 25% probability of be-
ing an unordered constraint rather than an ordered one. Af-
ter randomly deciding the type, our generator determines
bounds by uniformly sampling [-60,60] for local constraints
and [-120, 120] for global constraints. To ensure a consistent
problem, the generator checks each constraint, skips adding
it if it results in a conflict, and then randomly generates a
replacement. Finally, the generator stops once the temporal
network is connected. Using this generator, we created a set
of 1,000 example problems in total, consisting of 100 prob-
lems in each size from 10 to 100 in steps of 10.

Efficiency
To test the efficiency of our MILP and Approximate LP,
we used the Gurobi Optimizer’s provided implementation
of the Dual Simplex and Barrier methods (Gurobi 2021).
While Simplex methods have a worst-case exponential run-
time, they are often efficient in practice (Spielman and Teng
2004). Meanwhile, the Barrier method can find the solution

266



(a) New STN-IT benchmark (b) BDH benchmark (c) WS benchmark

Figure 4: Solve time (seconds) vs. problem size (number of timepoints) across three benchmarks.

in a worst-case polynomial runtime by traversing inside or
outside of the feasible region, but each step is relatively ex-
pensive (Nocedal and Wright 2006).

Figure 4 reports the average runtime of each approach as
the problem size scales. Note that the scale of the x axis
and y axis of each benchmark is different. The 1,000 newly
generated STN-ITs include a few problems that the MILP
could not solve in under a 5 minute time limit (Dual Sim-
plex timed out on 1 problem with 40 timepoints, 2 with 70,
5 with 90, and 3 with 100, whereas Barrier timed out on
1 problem with 40 timepoints, 2 with 70, 4 with 90, and 2
with 100). Similarly, there are 11 timed-out problems in the
WS benchmark (most involving 1280 timepoints) but none
in the BDH benchmark. Overall, the Approximate LP scales
significantly better overall than the MILP. The Dual Simplex
method generally performed best, though the Barrier method
has a theoretically better worst-case runtime. We believe the
Barrier method’s vulnerability to numerical issues causes
the peak in the LP runtime at 70 timepoints (Gurobi 2021;
pp. 941-2). While our newly generated benchmark proved to
quickly overtax the MILP algorithms as seen in 4a, we did
generate problems with up to 512 timepoints and verified
that the LP’s runtime scaled efficiently. In addition, Figures
4b and 4c show how performance scales to larger problems
where coordination was easier.

Factors impacting MILP efficiency Next, we explored
which features of the new STN-IT benchmark impact the
MILP performance using Dual Simplex. While we found no
strongly correlated features, we did find that STN-ITs that
timed out or took a significant time to solve tended to be ones
with a smaller portion of unordered edges, as shown in Fig-
ure 5. We also found that among strongly controllable STN-
ITs, those with longer solve times tended to have smaller
average executable ranges (i.e., measured as the size of the
interval at the time of the uncontrollable agent’s execution)
as shown in Figure 6. We tested a variety of other features
(e.g. the ratio between uncontrollable to controllable time-
points, the ordering between uncontrollable and controllable
timepoints, etc.) that ended up not being all that predictive of
MILP runtime. In summary, MILP runtime is most affected
by the problem size, the tightness of timepoints’ executable
ranges, and the strictness of the timepoint ordering.

Figure 5: Solve time (s) vs. the portion of edges in the prob-
lem that are unordered.

Figure 6: Solve time (s) vs. average range of uncontrollable
timepoints for strongly controllable problems.

267



Ctrl # of # of # of Emp.
Method solns failures timeouts Verif.
MILP 634 355 11 634
LP 1000 0 0 286
Early 1000 0 0 333
Rand. 1000 0 0 [85 - 101]

Table 1: Number of solutions, failures, timeouts, and empir-
ically verified solutions returned by each method.

Ctrl Rand. Unctrl. Early Unctrl.
Method All SC All SC
MILP 63.4% 100% 63.4% 100%
LP 56.52% 69.6% 52.8% 62.0%
Early 47.32% 63.6% 100% 100%
Rand. [23.0 - [31.6%, - [22.0% - [30.4% -

24.6%] 34.0%] 25.3%] 35.0%]

Table 2: Empirical performance against two simulated un-
controllable agents reported across all problems and just the
strongly controllable (SC) instances.

Accuracy
Next, we examined the trade-offs in terms of accuracy be-
tween the Approximate LP and exact MILP approaches us-
ing the more efficient Dual Simplex Method on the same,
newly generated benchmark. We also compared against two
other naı̈ve algorithms: an early dispatch strategy where
each controllable timepoint executes at its earliest possible
time; and a random dispatch strategy where each control-
lable timepoint executes at a random time in the interval de-
fined by its bound with the zero timepoint z. We repeated
the random strategy 50 times and report the 95% confidence
interval across all instances.

Strong Controllability Validation First, we developed a
program to verify the correctness of an STN-IT’s solution. It
checked that assignments to controllable timepoints were a
valid solution to the controllable agent’s subproblem. It also
ensured that the solution was consistent with all possible as-
signments to uncontrollable intervals. To mimic the dynamic
solving process of the uncontrollable agent, we updated the
time interval for each uncontrollable timepoint any time a
timepoint preceding it executed. During this dynamic pro-
cess, we verified that the full range of the time for each un-
controllable timepoint satisfied its constraints, which guar-
antees the solution is strongly controllable.

Table 1 shows the results for each method. Note the first
column reports the number of (approximate) solutions re-
turned, while the last reports the number empirically vali-
dated as strongly controllable. The MILP outperforms the
other strategies, with the highest accuracy, as all of its solu-
tions are empirically validated as correct. However, it does
time out on 11 of the problems. The random strategy finds
only 13.4-15.9% of the correct solutions that the MILP does,
while the Approximate LP and early strategies find 45.1%
and 52.5%, respectively. It is surprising that the naı̈ve early
first approach led to strongly controllable solutions more of-

ten than our LP approximation. This points to the existence
of structural features that may make the early strategy a rea-
sonable choice in some cases and validates work that shows
early is surprisingly effective in realistic, probabalistic set-
tings (Saint-Guillain et al. 2021).

Empirical Performance One advantage of the Approxi-
mate LP is that they always return an approximate solution,
giving the team a chance of success even if it is not guaran-
teed. We tested each method against two simulated models
of uncontrollable agents, one that uniformly randomly se-
lects times from its interval and the other that selects the
earliest time. We verified how often the solution returned by
each method resulted in a consistent simulated execution.

There are several conclusions that we can draw from Ta-
ble 2. First, the approximate methods worked substantially
better on the set of strongly controllable problems, including
the random method, which had a statistically significant in-
crease in solutions. Second, the Approximate LP performed
especially well against the random uncontrollable agent in
strongly controllable problems, succeeding nearly 70% of
time. The LP, which gives the controllable agent a chance to
succeed, even if it is not guaranteed, closes the relative gap
across all problems, succeeding 7% less often than MILP,
though MILP was still most likely to succeed in expectation.

The one exception is that the early strategy had 100%
accuracy for situations where the uncontrollable agent also
used the early strategy. This is a tautological result since
if a solution exists, a dynamic early strategy paired with a
strong early strategy is guaranteed to find it. We hypothesize
that there exist problem structures where the LP is a better
choice than the exact MILP solution given that the LP scales
significantly better than the MILP and still performs well.

Discussion
Our new framework of an STN for Improvisational Team-
work allows us to model impromptu teamwork performed
without reliable communication. We determined a set of as-
sumptions that enable the first definition of strong control-
lability for improvisational teams. We translated this defi-
nition into a Mixed Integer Linear Program that character-
izes strongly controllable solutions to STN-ITs when they
exist and argued analytically that the MILP was both sound
and complete. We showed empirically that the MILP cor-
rectly identified which STN-IT’s were strongly controllable
across a new benchmark of 1000 randomly generated STN-
ITs, though MILP is generally NP-hard. We also provided
an efficient, LP-based approach that approximates the MILP
result. While the MILP scales reasonably well on problems
with fewer than 100 timepoints, we showed that the Approx-
imate LP scales much better but sacrifices overall accuracy,
leading to a lower likelihood of successful execution.

Future work includes analyzing the characteristics of real-
world human-robot teamwork to create a more accurate, in-
teresting set of benchmarks. We are also interested in ex-
tending to teams with more than two agents, or relaxing the
assumptions that the uncontrollable agent is fully rational
and has full observability. Finally, we hope to validate our
approaches in an actual human-robot deployment.

268



Acknowledgements
Funding for this work was graciously provided by the Na-
tional Science Foundation under grant IIS-1651822. Thanks
to the anonymous reviewers, HMC faculty, staff and HEAT-
lab members for their support and constructive feedback.

References
Akmal, S.; Ammons, S.; Li, H.; Gao, M.; Popowski, L.; and
Boerkoel, J. C. 2020. Quantifying controllability in tempo-
ral networks with uncertainty. Artificial Intelligence, 289:
103384.
Boerkoel, J.; and Durfee, E. 2013. Distributed Reasoning for
Multiagent Simple Temporal Problems. Journal of Artificial
Intelligence Research, 47: 95–156.
Boerkoel, J.; Planken, L.; Wilcox, R.; and Shah, J. 2013.
Distributed Algorithms for Incrementally Maintaining Mul-
tiagent Simple Temporal Networks. In Proc. of the
23rd International Conference on Automated Planning and
Scheduling (ICAPS-13), 11–19.
Castro, B.; Roberts, M.; Mena, K.; and Boerkoel, J. 2017.
Who Takes the Lead? Automated Scheduling for Human-
Robot Teams. In Proc. of AAAI Fall Symposium on Artificial
Intelligence for Human-Robot Interaction; AAAI Technical
Report FS-17-01, 85–89.
Deichter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. In Artificial Intelligence 49, 61–95.
Hoffman, G.; and Breazeal, C. 2007. Effects of anticipa-
tory action on human-robot teamwork efficiency, fluency,
and perception of team. In Proc. of The 2nd Annual Con-
ference on Human-Robot Interaction (HRI-07), 1–8.
Hunsberger, L. 2002. Algorithms for a Temporal Decou-
pling Problem in Multiagent Planning. In Proc. of The 18th
National Conference on Artificial Intelligence (AAAI-02),
468–475.
Hunsberger, L. 2009. Fixing the Semantics for Dynamic
Controllability and Providing a More Practical Character-
ization of Dynamic Execution Strategies. In Proc. of the
16th International Symposium on Temporal Representation
and Reasoning (TIME-09), 155–162.
Nocedal, J.; and Wright, S. J. 2006. Numerical optimization,
563–597. New York: Springer, 2nd ed. edition.
Saint-Guillain, M.; Vaquero, T.; Chien, S.; Agrawal, J.; and
Abrahams, J. 2021. Probabilistic Temporal Networks with
Ordinary Distributions: Theory, Robustness and Expected
Utility. Journal of Artificial Intelligence Research, 71:
1091–1136.
Spielman, D. A.; and Teng, S.-H. 2004. Smoothed analy-
sis of algorithms: Why the simplex algorithm usually takes
polynomial time. Journal of the ACM, 51(3): 385–463.
Vidal, T.; and Fargier, H. 1999. Handling Contingency in
Temporal Constraint Networks: from Consistency to Con-
trollabilities. Journal of Experimental and Theoretical Arti-
ficial Intelligence, 11(1): 23–45.
Wilson, M.; Klos, T.; Witteveen, C.; and Huisman, B. 2014.
Flexibility and decoupling in Simple Temporal Networks. In
Artificial Intelligence 214, 26–44.

269


