Accessible Aerial Autonomy

Nick Berezny '12, Lilian de Greef '12, Brad Jensen '13, Kim Sheely '12, Malen Sok '13, and Zach Dodds

ARDrone as robot?

RC toy, 802.11b

Open, ASCII protocol

Gyros, diagnostics, forward and downward cameras:

Forward camera feed from a Kinect-controlled (RC) flight

Beyond RC?

Visions of quadrotor perching

Reality of quadrotor perching

ROS drivers

We adapted a communitycontributed Python interface

Including learning ROS, it took < a week to integrate the drone!

ROS-based flight test, human-controlled

downward camera

downward camera + PIP

Four video options are accessible. Psycho helps.

Flying's Advantage

Our task: cooperation between a Create and the drone Sliding-scale autonomy is crucial, especially in development

Flying's Advantage

2x speed

Our task: cooperation between a Create and the drone Sliding-scale autonomy is crucial, especially in development

Sensing

original marker

OpenCV + ROS

Vision *required*

In-hand + flight tests

Sensing, sensibly!

Incorporating April Tags

OpenCV + ROS + *anything*Vision *required*In-hand + flight tests

all selling points

Hula Hopping

2x speed autonomous sensing + state-transitions but human-controlled

task: navigate within a graph of locations (hula hoops are for visualization)

Tagless localization

- 1. SURF features
- 2. Nearest Neighbors
- 3. Score using match number + strength

example test image

Tagless localization

best match: all features, with lines joining "good" matches

Tagless localization

worst match: all features, with lines joining "good" matches

Ground support

2x speed 4x speed

Alignment and wall-following using depth images

Pursuing a Roomba using the RGB image stream

Willow Garage's + Michael Ferguson's *TurtleBot* platform

Verdicts?

Yes to the drone...

but with *constrained* expectations for control

YES to ROS...

in a *first-year* lab course? We'll see.