Complete Heuristics

Definition: (4.5.1 – Set-of-Support Resolution) Let Γ be a set of Clauses, and let Δ be a subset of Γ such that the set $\Gamma - \Delta$ is satisfiable. Then, at each resolution step, pick the clauses C_1 and C_2 to be resolved such that at least one of them is not a member of $\Gamma - \Delta$.

Definition: (4.5.3 – Linear Resolution) Let the original goal A of the attempt to prove $\Gamma \Rightarrow A$ be called the center clause. Then, at each resolution step, pick the clauses C_1 and C_2 to be resolved such that at least one of them is the center clause. The resolvent then becomes the center clause in the next step.

Both of these restricted methods are complete: if there is a resolution refutation, then one can be found using either of these methods. Linear Resolution would also have enabled us to terminate the attempt to show that 3 was not in the list [1, 2, 4] and report it unprovable.
Incomplete Heuristics

Definition: (4.5.4 – Input Resolution) At each resolution step, pick the clauses C_1 and C_2 to be resolved such that at least one of them is one of the original clauses (given as input to the refutation procedure).

In general, input resolution is not complete. However, it is often extremely efficient.
Horn Clauses

Definition: A *Horn Clause* is a formula of the form:

$$\forall \bar{x}((A_1 \land \cdots \land A_n) \Rightarrow A_0)$$

where each of the formulas A_i is atomic, and \bar{x} contains exactly the free variables of the underlying implication.

Note that in clausal form, a Horn clause appears as:

$$\neg A_1 \lor \cdots \lor \neg A_n \lor A_0$$

Lemma: If we restrict the clauses of Γ to be Horn clauses, and the consequence A to be of the form:

$$\exists \bar{x}(A_1 \land \cdots \land A_n)$$

then linear, input resolution is complete. Further, if there is refutation, then there is a refutation which produces an answer substitution.