Algorithms
Z Sweedyk
Lecture 2
9/4/00

Last class
The two important questions we consider in CS140:
– Is the algorithm correct?
– Is the algorithm fast?

Running Time
Where to measure?

A useful assumption
$T_A(Z)$: number of steps of algorithm on input Z
$T_M(Z)$: number of steps of machine on input Z
$T_A(Z)/c < T_M(Z) < cT_A(Z)$

Running Time:
What to measure?

Pick special case
• Run time depends on input size
• Run time can vary on different inputs of size n
Worst case performance of algorithm ▲

- We can compute this function at a finite number of points.
- Better yet, we can model this function for all input sizes.

A general problem …

- Question: How can we give a succinct description of an arbitrary function?
- Answer: Big-O notation.

Upper Bounds

- $f : \mathbb{N} \rightarrow \mathbb{N}$ and $g : \mathbb{N} \rightarrow \mathbb{N}$ are positive-valued, monotonically increasing functions.
- $O(g(n)) = \{ f(n) : \text{there are constants } c \text{ and } M \text{ such that } f(n) \leq c \cdot g(n) \text{ for all } n \geq M \}$

Examples:

- Is $n^2 \in O(n^3)$?
- Is $2^n \in O(n^3)$?

We will also say $f(n) = O(g(n))$ to mean $f(n) \in O(g(n))$

CS140 pragmatism

What is the asymptotic behavior of the worst-case running time of the algorithm?
What is the asymptotic behavior of the worst-case running time of the algorithm?

Run time bounds for algorithm \mathcal{A}

- The running time of \mathcal{A} is $O(n^3)$.
- The worst case running time of \mathcal{A} is $O(n^3)$.
- \mathcal{A} is $O(n^3)$.

Rate of growth of common functions

- Review of properties/notation
- See CLR pp 32-37 for details

KNOW THIS STUFF
Some useful observations about Big-O

- Transitivity: \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \) \(\Rightarrow f(n) = O(h(n)) \)

- If \(\lim_{n \to \infty} f(n)/g(n) \) is constant then \(f(n) = O(g(n)) \).

- If \(\lim_{n \to \infty} f(n)/g(n) \) is unbounded then \(f(n) \neq O(g(n)) \).

Logarithms

Compare the rate of growth of the following functions:

- \(\log n \)
- \(\log n^2 \)
- \(\log 10000n \)

Polynomials

Compare the rate of growth of the following functions:

- \(n \)
- \(n^2 \)
- \(1000n^2 + n \)

Polynomially bounded functions

\(f(n) \) is polynomially bounded if there is a constant \(k \) such that \(f(n) = O(n^k) \)

Exponentials

- Compare the rate of growth of the following functions:
 - \(2^n \)
 - \(3^n \)
 - \(2^{n^2} \)
 - \((2^n)^2 \)

Some rules of thumb

- Logs are slower growing than polynomials: \(\log(n) = O(n^k) \) for any \(k > 0 \)

- Polynomials are slower growing than exponentials: \(n^k = O(r^n) \) for any \(k > 0, r > 1 \)
Logs, Polys, and Exps

- Compare the rate of growth of the following functions:
 - \(\log n \)
 - \(n^3 \)
 - \(2^n \)
- Which are polynomially bounded?

Other functions

- Factorial: \(n! = n(n-1)! \), \(0! = 1 \)
- Tower of 2: \(T^*(n) = 2^{T^*(n-1)}, T^*(0) = 1 \)
- Iterated log: \(\log^*(n) = m \) such that \(T^*(m-1) < n \leq T^*(m) \)
- Ceiling: \(\lceil \lceil n \rceil \rceil = 2^m \) such that \(m-1 < \log n \leq m \)

Logs, polys, exps, and others

- Compare the rate of growth of the following functions:
 - \(\log n \), \(n^3 \), \(2^n \), \(n! \), \(T^*(n) \), \(\log^*(n) \), \(\lceil \lceil n \rceil \rceil \)
- Which of these functions are polynomially bounded?

Beyond O

real numbers

- \(\leq \)
- \(\geq \)
- \(= \)
- \(< \)
- \(> \)

functions

- \(O \)
- \(\Omega \)
- \(\Theta \)
- \(o \)
- \(\omega \)

Lower Bounds

- If \(f : \mathbb{N} \rightarrow \mathbb{N} \) and \(g : \mathbb{N} \rightarrow \mathbb{N} \) are positive-valued, monotonically increasing functions.
- \(\Omega(g(n)) = \{ f(n) : \text{there are constants } c \text{ and } M \text{ such that } f(n) \geq c g(n) \text{ for all } n \geq M \} \)

We will also say

\(f(n) = \Omega(g(n)) \) to mean \(f(n) \in \Omega(g(n)) \)
Definition: Θ

$f(n) = \Theta(g(n))$ if the following hold:
1. $f(n) = O(g(n))$, and
2. $f(n) = \Omega(g(n))$

Definition: little-o, little-ω

- $f(n) = o(g(n))$ if $\lim_{n \to \infty} f(n)/g(n) = 0$
- $f(n) = \omega(g(n))$ if $\lim_{n \to \infty} f(n)/g(n) = \infty$

Logs, polys, exps, and others

Compare the following functions. Which of O, Ω, Θ, o, and ω apply?

$\log n$, n^3, 2^n, $n!$, $T^*(n)$, $\log^*(n)$, $\lceil n \rceil$

A slight twist…

Is $f(2n) = O(f(n))$?
1. $f(n) = 1$: Is $2n = O(n)$?
2. $f(n) = 3n$: Is $6n = O(3n)$?
3. $f(n) = n^2$: Is $4n^2 = O(n^2)$?
4. $f(n) = 2^n$: Is $4^x = O(2^n)$?
5. $f(n) = n!$: Is $(2n)! = O(n!)$?