Outline

- Divide and conquer (work trees)
- Heap-sort
- Quick-sort

Last time … Merge-sort

Merge-sort(S={s₁, s₂, ..., sₙ})
 If n=1 return(S)
 Else
 S₁ = Merge-sort(s₁, ..., sₙ/2)
 S₂ = Merge-sort(sₙ/2+1, ..., sₙ)
 Return Merge(S₁, S₂)

Divide and Conquer

- “Divide and conquer” is an algorithmic technique:
 – Break the problems into sub-problems of size n/b
 – Solve the sub-problems
 – Combine the solutions to the sub-problems to create a solution for the original problem
- “Divide and conquer” recurrence relations
 – T(1)=c=f(1)
 – T(n)=a T(n/b) + f(n)

Work Tree for Divide and Conquer

First consider the case n=bᵐ

Total work: c

Work Tree for Divide and Conquer

First consider the case n=bᵐ

A root with a sub-trees
 – Root
 Input Size: n=bᵐ
 Work: f(n)
 – Each child
 Roots a work tree with Input Size bᵐ⁻¹
Work Tree for Divide and Conquer

Properties of nodes at level \(i \) (root is at level 0):
- Input size: \(n/b^i \)
- Work: \(f(n/b^i) \)

Properties of level \(i \):
- Number of nodes at level \(i \): \(a \)
- Total work of nodes at level \(i \): \(af(n/b^i) \)

Property of tree:
- Number of levels: \(m+1 \)
- Total work: \(\sum_{i=0}^{m} af(n/b^i) = ? \)

Where is “most” of the work?
\(f(n) \) is slow-growing \(\leftrightarrow \) \(f(n) \) is fast-growing

\[f(n) \]
\[af(n/b) \]
\[a^2f(n/b^2) \]
\[a^m=0 \]
\[n^m/0 \]

\(f(n)=cn, m=\log_b n \)

\[f(n) = cn \]
\[af(n/b) = cn(a/b) \]
\[a^2f(n/b^2) = cn(a/b)^2 \]

\[T(n) = cn \sum_{i=0}^{m} (a/b)^i \]

Total Work

\[T(n) = cn \sum_{i=0}^{m} (a/b)^i \]

\(a<b: \) \(\mathcal{O}(n) \)
\(a=b: \) \(\mathcal{O}(n \log_b a) \)
\(a>b: \) \(\mathcal{O}(n^{\log_b a}) \)

\(f(n)=cn^k \)

\[f(n) = cn^k \]
\[af(n/b) = cn^k(a/b^k) \]
\[a^2f(n/b^2) = cn^k(a/b^{2k})^2 \]

\[a^m=0 \]
\[n^m/0 \]

\[T(n) = cn^k \sum_{i=0}^{m} (a/b)^i \]
Total Work

\[T(n) = cn^k \sum_{i=0}^{m} \left(\frac{a}{b} \right)^i \]

- \(a < b \):
- \(a = b \):
- \(a > b \):

Heaps

A heap is a data-structure for storing integer that supports:

1. Build-heap(S): Return a heap on the integers in the set S.
2. Insert(x,H): Insert the integer x into the heap H.
3. Find-min(H): Return the smallest integer in the heap H.
4. Extract-min(H): Remove the smallest integer from the heap H and return it.

Outline

- Divide and conquer (work trees)
- **Heap-sort**
- Quick-sort
Heap: \{7,1,5,4,2,6\}

1. Rooted, binary tree, filled level by level from the left.
2. Heap property: the integer stored at a node is no larger than those of its descendents.

Heap

A heap is a data-structure for storing integer that supports:

1. Build-heap(S): Return a heap on the integers in the set S.
2. Insert(x,H): Insert the integer x into the heap H.
3. Find-min(H): Return the smallest integer in the heap H.
4. Extract-min(H): Remove the smallest integer from the heap H and return it.

Insert(3,H) – Step 1 (add)

Insert(3,H) – Step 2 (bubble up)

Insert(3,H) – return
Heap

A heap is a data-structure for storing integer that supports:
1. Build-heap(S): Return a heap on the integers in the set S.
 \(O(\log n)\)
2. Insert(x,H): Insert the integer x into the heap H.
 \(O(1)\)
3. Find-min(H): Return the smallest integer in the heap H.
4. Extract-min(H): Remove the smallest integer from the heap H and return it.

Extract-min(H) – Step 1 (remove)

Extract-min(H) – Step 2 (move last to root)

Extract-min(H) – Step 3 (bubble down)

Extract-min(H) – return
Heap

A heap is a data-structure for storing integer that supports:

1. \text{Build-heap}(S): Return a heap on the integers in the set \(S \).
 \(\mathcal{O}(\lg n) \)

2. \text{Insert}(x,H): Insert the integer \(x \) into the heap \(H \).
 \(\mathcal{O}(1) \)

3. \text{Find-min}(H): Return the smallest integer in the heap \(H \).
 \(\mathcal{O}(1) \)

4. \text{Extract-min}(H): Remove the smallest integer from the heap \(H \) and return it.
 \(\mathcal{O}(\lg n) \)

Build-heap\{7,1,5,4,2,6\}

Heap

Bubble down

Build-heap\{7,1,5,4,2,6\}

Heap

Bubble down

Build-heap\{7,1,5,4,2,6\}

Heap

Bubble down

Build-heap\{7,1,5,4,2,6\}
Running Time

Level 0: 1 node, takes $O(\lg(n))$
Level 1: 2 nodes, each takes $O(\lg(n/2))$
Level i: 2^i nodes, each takes $O(\lg(n/2^i))$
Level $\lg(n/2)$: $n/2$ nodes, each takes $O(\lg(n/2^{\lg(n/2)}))$
Time: $\sum_{i=0}^{\lg(n/2)^{\lg(n/2)}} = O(n)$

Implementing a heap in an array

Array Indexing

Heap-sort(S)

Quick-sort(S)

Outline

- Divide and conquer (work trees)
- Heap-sort
- Quick-sort
Quick-sort(3,1,5,2,4)
Pivot rule: Choose first element in list
Quick-sort(3,1,5,2,4)
Quick-sort(1,2), 3, Quick-sort(5,4)
Quick-sort(), 1, Quick-sort(2), 3, Quick-sort(5,4)
1, 2, 3, Quick-sort(5,4)
1,2,3, Quick-sort(4), 5, Quick-sort()
1,2,3,4,5

Analysis
• Quick-sort is correct: Inductive argument
• Quick-sort is $O(n^2)$
• Average case analysis of quick-sort.

Average-case analysis
What does average-case mean?
– Deterministic algorithm with a known input distribution
– Randomized algorithm on any (i.e. worst-case) input

Suppose …
• We have a pivot rule such that for some $d>1$
 – n/d elements are no less than the pivot
 – n/d elements are no greater than the pivot
• $T(n) \leq T(n/d) + T((d-1)n/d) + c$

Work Tree
Input = n
Work = cn

Running Time
• Work done at level i: $O(cn)$
• Number of levels: $O(\log_{(d-1)/d} n)$
• Running time: $O(n \log(n))$
Randomized Quick-sort(S)

- If $|S| \leq 1$ then return
- Choose a pivot s uniformly at random from S
- $S_1 = \{ t \in S - \{s\} | t > s \}$
- $S_2 = \{ t \in S - \{s\} | t \leq s \}$
- Return Quick-sort(S_1), s, Quick-sort(S_2)

Average-case analysis

What does average-case mean?
- Deterministic algorithm with a known input distribution
- Randomized algorithm on any (i.e. worst-case) input

A brief tour of (discrete) probability theory…

- Sample space and elementary events
- Discrete probability distributions
- Discrete random variables
- Expectation

The experiment

- A fair coin is flipped
- Sample space: $\{\text{Head}, \text{Tail}\}$

Discrete Probability Distribution

Assigns a real number to outcomes:
- Experiment 1: $P(H) = P(T) = 1/2$
- Experiment 2:
 $P(\text{HH}) = P(\text{HT}) = P(\text{TH}) = P(\text{TT}) = 1/4$
Discrete Probability Distribution Properties

- \(P(A) \geq 0 \)
- \(P(S) = 1 \)
- \(P(A \cup B) = P(A) + P(B) \) when \(A \) and \(B \) are disjoint events.

Discrete Random Variable \(X \)

- Sample space is a finite set of real numbers.
- \(X \) is the outcome of the experiment.
- Probability distribution: \(P(X=x) \)
- Expected value of \(X \):
 \[
 E[X] = \sum_{x \in S} x \cdot P(X=x)
 \]
 \[
 E[X^2] = \sum_{x \in S} x^2 \cdot P(X=x)
 \]
 \[
 \text{Var}(X) = E[(X-E[X])^2]
 \]

Example

- A unfair coin is tossed \(n \) times:
 \(P(H)=p, P(T)=1-p=q \)
- \(X \) is the number of heads
- \(P(X=k) = C(n, k) \cdot p^k \cdot q^{n-k} \)
 (Binomial distribution)
- \(E[X] = np \)
- \(E[X^2] = npq + n^2p^2 \)