Outline

- A lower bound for comparison-based sorting
- Linear time sorting

Run Time Bounds

Upper bounds on the \textit{Worst Case} running times of sorting algorithms:
- Bubble-sort: $O(n^2)$
- Modified Bubble-sort: $O(n^2)$
- Insertion-sort: $O(n^2)$
- Merge-sort: $O(n \log(n))$
- Heap-sort: $O(n \log(n))$
- Quick-sort: $O(n^2)$

Run Time Bounds cont.

Lower bounds on the \textit{Worst Case} running times of sorting algorithms:
- Bubble-sort: $\Omega(n^2)$
- Modified Bubble-sort: $\Omega(n^2)$
- Insertion-sort: $\Omega(n^2)$
- Merge-sort: $\Omega(n \log(n))$
- Heap-sort: $\Omega(n \log(n))$
- Quick-sort: $\Omega(n^2)$

Comparison-based sorting

A comparison-based sorting algorithm is one that doesn’t need to read the input, provided it is given the size of the input and a comparison oracle.

Lower Bound for Sorting

Theorem: Any comparison-based sorting algorithms has a worst-case running time that is $\Omega(n \log(n))$.

Proof of Theorem

A decision tree describes the queries of a comparison-based algorithm on input size n. A root to leaf path represents the sequence of queries for a particular input.
Proof of Theorem cont.

Each leaf corresponds to the permutation that sorts the input.

Proof cont.

- There must be at least \(n! \) leaves.
- A binary tree with \(n! \) leaves has a path with length at least \(\log(n!) \).
- By Stirling’s approximation
 \[\log(n!) = \Omega(n \log(n)) \]

Outline

- A lower bound for comparison-based sorting
- Linear time sorting

Sorting in \(O(n) \)

Can we do it?

Yes – but only if we can make some assumptions about the input.

Some examples:
- Counting-sort
- Radix-sort
- Bucket-sort

Counting-sort(S)

- Assumption: The input integers are in the range \([0..B]\), where \(B \) is some constant.
- For \(i = 0 \) to \(B \): Count\((i) = 0\)
- For \(i = 1 \) to \(n \): Count\((S(i))++\)
- For \(i = 1 \) to \(B \): For \(j = 1 \) to count\((i)\): Write \(i \)

Counting-sort

- Is it correct?
 - Yes

- Is it fast?
 - \(O(n+B) \) but \(B \) is constant so \(O(n) \)
Radix-sort

- Assumption: The input are decimal integers with exactly D digits, where D is some constant.

- For $i = 1$ to D
 - Use counting-sort to sort S based on i^{th} digit using current order to break ties. (Least significant digit is digit 1.)

Radix-sort(S)

329	720	720	329
457	355	329	355
657	436	436	436
839	457	839	457
436	657	355	657
720	329	457	720
355	839	657	839

Radix-sort

- Is it fast?
 - $O(Dn)$ but D is constant so $O(n)$

- Is it correct?
 - Loop invariant: The red numbers are sorted.

Bucket-sort(S)

- Assumption: The input are uniformly distributed in the range $[0..1)$.

- Initialize buckets $B[0..n-1]$ to nil

- For $i = 1$ to n
 - Insert $S[i]$ into the sorted list at $B \lfloor n \cdot S[i] \rfloor$
 - Output the concatenated buckets

Bucket-sort

- Is it correct?
 - Yes

- Is it fast?
 - The expected running time is $O(n)$.
Average-case analysis

What does average-case mean?
- Deterministic algorithm with a known input distribution
- Randomized algorithm on any (i.e. worst-case) input

A brief tour of (discrete) probability theory…

- Sample space and elementary events
- Discrete probability distributions
- Discrete random variables
- Expectation

The experiment

- A fair coin is flipped
- Sample space: \{Head, Tail\}

The experiment

- Two fair coins are flipped
- Sample space: \{HH, HT, TH, TT\}

Discrete Probability Distribution

Assigns a real number to outcomes:
- Experiment 1: \(P(H) = P(T) = 1/2\)
- Experiment 2:
 \(P(HH) = P(HT) = P(TH) = P(TT) = 1/4\)

Discrete Probability Distribution

- \(P(A) \geq 0\)
- \(P(S) = 1\)
- \(P(A \cup B) = P(A) + P(B)\) when A and B are disjoint events.
Discrete Random Variable X

- Sample space is a finite set of real numbers.
- X is the outcome of the experiment
- Probability distribution: $P(X=x)$
- Expected value of X:
 $$E[X] = \sum_{x \in S} x P(X=x)$$
 $$E[X^2] = \sum_{x \in S} x^2 P(X=x)$$
 $$\text{Var}(X) = E[(X-E[X])^2]$$

Example

- A unfair coin is tossed n times:
 $P(H)=p$, $P(T)=1-p=q$
- X is the number of heads
- $P(X=k) = \binom{n}{k} p^k q^{n-k}$ (Binomial distribution)
- $E[X] = np$
- $E[X^2] = npq + n^2 p^2$

Bucket-sort(S)

- Let T be the number of comparisons made by the algorithm on a random input of size n.
- Claim: $E[T] = O(n)$

Analysis

- Let X_i be the number of input that belong in bucket i. X_i is binomially distributed with $p=1/n$.
- $T \leq c \sum_{i=0}^{n-1} X_i^2$
- $E[T] \leq c \sum_{i=0}^{n-1} E[X_i^2]$
 $$= c \sum_{i=0}^{n-1} (npq + n^2 p^2) = O(n).$$