CS140 Pragmatism

What is the asymptotic, worst-case running time of the algorithm?

Types of Algorithms

• Recursive Algorithm: one that calls itself
• Purely Iterative Algorithm: one that doesn’t

Run Time Analysis

• Iterative algorithm → Loop counting
• Recursive algorithm → Recurrence relations

Iterative Sorting Algorithms

• Insertion-sort
• Bubble-sort
• Modified Bubble-sort

Insertion-sort(S)

(in pseudo-code) \(S \) is an array of \(n \) integers: \(S(1), S(2), \ldots, S(n) \)

For \(j = 2 \) to \(n \)
key = \(S(j) \)
i = \(j-1 \)

While \(i > 0 \) and \(S(i) > \text{key} \)
\(S(i+1) = S(i--) \) \(C \) decrement operator
\(S(i+1) = \text{key} \)

Insertion Sort – Status after each change

<table>
<thead>
<tr>
<th>(j)</th>
<th>(\text{key})</th>
<th>(i)</th>
<th>(S(1))</th>
<th>(S(2))</th>
<th>(S(3))</th>
<th>(S(4))</th>
<th>(S(5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Correctness

• Is Insertion-sort correct?
• Proof by loop invariant:
 When the for loop executes for the kth time, S(1), S(2), …, S(k) are sorted in ascending order.
 (Prove claim by induction on k.)

Loop Counting: Insertion-sort(S)

\[
\sum_{j=2}^{n} \sum_{i=0}^{j-1} (1 + 1 + \cdots + 1) + 1 = O(n^2)
\]

Bubble-sort(S)

Bubble-sort(S)
 For i=n down to 2
 For j=1 to i-1
 If S(j) > S(j+1) then swap(S(j), S(j+1))
 Return

Correctness

• Is Bubble-sort correct?
• Proof by loop invariant:
 When the i-loop completes its kth execution,
 • S(n-k+1), S(n-k+2), …, S(n) is sorted in ascending order, and
 • the max(S(1), …, S(n-k)) ≤ S(n-k+1).

BubbleSort – Status after each change

\[
\begin{array}{|c|c|c|c|c|}
\hline
i & j & S(1) & S(2) & S(3) \hline
\hline
5 & 1 & 3 & 5 & 2 \hline
5 & 1 & 3 & 5 & 2 \hline
5 & 2 & 1 & 3 & 5 \hline
\hline
\end{array}
\]

Does Bubble-sort do too much work?

1, 3, 2, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 4

• Repeat on smaller list
Modified Bubble-sort

Modified-Bubble-sort(S)
SWAP=T
For i=n down to 2
 If SWAP=F then return
 SWAP=F
For j=1 to i -1
 If S(j)>S(j+1) then swap(S(j),S(j+1)) and set
 SWAP=T
Return

Example

1. 3. 2. 4. 5
1. 2. 3. 4. 5
1. 2. 3. 4. 5
• Repeat on smaller list
 unless no swaps are made

Loop counting: M-Bubble-sort

\[
1 + \sum_{i=2}^{n} \sum_{j=1}^{i-1} (3 + \sum_{k=1}^{j-1} 4)) = O(n^2)
\]

Loop Counting: Bubble-sort

• Also O(n^2)

Summation

\[
\sum_{i=2}^{n} \sum_{j=1}^{i-1} c = c \sum_{i=2}^{n} (i-1) = c \sum_{i=2}^{n} i - c \sum_{i=2}^{n} 1 - c \sum_{i=2}^{n} n = O(n^2)
\]

Series

• A series is a summation of terms
 - Arithmetic series: 1+2+...+n
 - Geometric series: 1+a+a^2+...+a^n

\[
\sum_{i=2}^{n} \sum_{j=1}^{i-1} c
\]
Series
Things we want to do:

- Solve exactly
- Bound above or below
- Prove that a solution (or bound) is correct

Closed form solutions to some common series

- \(f(n) = 1 + 2 + ... + n = \frac{n(n+1)}{2} \)
- \(f(n) = 1^2 + 2^2 + ... + n^2 = \frac{(2n^3 + 3n^2 + n)}{6} \)
- \(f(n) = 1 + a + a^2 + ... + a^n = \frac{n}{1-a} \) if \(0 \leq a < 1 \)
- \(f(n) = 1 + a + a^2 + ... = \frac{(a^{n+1}-1)}{(a-1)} \) else

Upper Bounds on series

For any constant \(k \):

\[
\sum_{i=1}^{n} i^k \leq \sum_{i=\lceil n/2 \rceil}^{n} n^k \geq \sum_{i=\lceil n/2 \rceil}^{n} \lceil n/2 \rceil^k \geq \Omega(n^{k+1})
\]

So \(\sum_{i=1}^{n} i^k = \Theta(n^{k+1}) \)

Series
Things we want to do:

- Solve exactly
- Bound above or below
- Prove that a solution (or bound) is correct
Proving correctness

- Claim: \(\sum_{i=1..n} i^2 = \frac{(2n^3 + 3n^2 + n)}{6} \)
- Claim holds for \(n = 1 \).
- If the claim holds for \(n \) then it holds for \(n+1 \):
 \[
 \sum_{i=1..n+1} i^2 = (n+1)^2 \cdot \frac{(2n^3 + 3n^2 + n)}{6} + \frac{n(n+1)(2n+1)}{6}
 = (2(n+1)^3 + 3(n+1)^2 + (n+1))/6
 \]

Run Time Analysis

- Iterative algorithm \(\rightarrow \) Loop counting
- Recursive algorithm \(\rightarrow \) Recurrence relations

Sort3: A Recursive Algorithm for SIAO

Sort3(S)
If ||S||< 1
 Return: S
Else
 Return: Sort3(S\max-element(S)),max-element(S)

Example: Sort3(3,1,5,2,4)
Sort3(3,1,5,2,4) = Sort3(3,1,2,4),5
= Sort3(1,2,3,4,5)
= Sort3(1),2,3,4,5
= 1,2,3,4,5

Recursive Algorithms

What about Sort3?

Sort3(S)
If ||S||< 1
 Return: S
Else
 Return: Sort3(S\max-element(S)),max-element(S)

Let \(T(n) \) be the running time of Sort3:
\[
T(1) = c_1 \\
T(n) = c_n + T(n-1), \quad n > 1
\]

Recurrence Relations

- Methods to solve or bound:
 - Guess and prove
 - Unwinding
 - Master method
 - WORK TREES
Guess and Prove (bound)

• Guess: \(T(n) = O(n^2) \)

• Proof: We need to show that there exists constants \(c \) and \(M \) such that \(T(n) \leq cn^2 \) for all \(n \geq M \)

\[
T(1) \leq c, \quad \text{provided } c \geq c_1
\]

• Suppose \(T(n-1) \leq c(n-1)^2 \).
 – \(T(n) = c n^2 + T(n-1) \)
 – \(\leq c n^2 + c(n-1)^2 \)
 – \(= c n^2 + c(n^2 - 2n + 1) \)
 – \(= cn^2 - (2c - c_2)n + c \)
 – \(\leq cn^2, \quad \text{provided } c \geq c_2 \) and \(n \geq 1 \)

Guess and Prove cont.

• \(T(n) \leq cn^2 \) for all \(n \geq 1 \), where \(c = \max(c_1, c_2) \)

\[
T(n) \leq O(n^2)
\]

Unwinding

\[
T(n) \leq c_1 n + T(n-1) \\
\leq c_1 n + c_2 (n-1) + T(n-2) \\
\vdots \\
\leq c_1 n + \sum_{i=2}^{n} c_i = (c_1 - c_j) + c_j(n-1)/2 \\
= O(n^2)
\]

Master Theorem

• Read the book

Work Tree

• A rooted tree for algorithm A on input size \(n \):
 – Each node corresponds to a (recursive) call of A
 – An edge from \(u \) to \(v \) represents the fact that the recursive call \(v \) is made from within \(u \).
Example: Sort3(3,1,5,2,4)

Work Tree
- The “work” done at a node is the number of steps performed by the algorithm within the recursive call

Sort3 Work Tree
- Consider a node at level i, where the root is at level 0:
 - What is the input size? n-i
 - What is the work done? \(c(n-i) \)
 - How many nodes are there at level i? 1
 - What is the total work done at level i? \(c(n-i) \)
 - How many levels are there in the tree? n
 - What is the total work done? \(\sum_{i=0}^{n-1} c(n-i) = O(n^2) \)

Merge-sort
Merge-sort(S={s_1, s_2, ... , s_n})
If n=1 return(S)
Else
 S_1 = Merge-sort(s_1, ... , s_{n/2})
 S_2 = Merge-sort(s_{n/2+1}, ... , s_n)
Return Merge(S_1, S_2)

Merge(s_1,s_2,...,s_k; t_1,t_2,...,t_j)
(k>0 and j>0)
- If \(s_i \leq t_i \) then output \(s_1, \) Merge(s_{i+1},...,s_k; t_1,t_2,...,t_j)
- Else output t_1, Merge(s_1, s_2,...,s_k; t_2,...,t_j)

Example: Sort3(3,1,5,2,4)

Input size: 5, work 5c
Input size: 4, work 4c
Input size: 3, work 3c
Input size: 2, work 2c
Input size: 1, work c
Merge-sort(4,1,3,2)

Input: 4,1,3,2
Merge-sort(4,1)

Input: 4,1
Merge-sort(4)

Input: 4

Merge-sort(4,1,3,2)

Input: 4,1,3,2
Merge-sort(4,1)=1,4
Merge-sort(3,2)

Input: 3,2
Merge-sort(3)=3
Merge-sort(2)=2
Merge(3,2)=2,3

Merge-sort(4,1,3,2)

Input: 4,1,3,2
Merge-sort(4,1)=1,4
Merge-sort(3,2)=3,4
Merge(1,4; 2,3) = 1,2,3,4
Is Merge-sort correct?

- If n=1 then yes
- If n>1 then
 - We can assume Merge-sort(S(1),...,S(\lfloor n/2 \rfloor)) and Merge-sort(S(\lfloor n/2 \rfloor+1),...,S(n)) return correctly sorted lists.
 - So the merge of these lists is a correctly sorted list.

How fast is Merge-sort?

(Assume n=2^m)

- m=0: T(1) = c
- m>0: T(2^m) = 2T(2^{m-1}) + c2^m

Work Tree for Merge-sort

Input Size: 1 (m=0)

Input Size: 2 (m=1)

Input Size: 4 (m=2)

Input Size: n=2^m

A root with two sub-trees
- Root
 - Input Size: n
 - Work: cn
- Each child
 - Roots a work tree with Input Size 2^{m-1}
Work Tree for Merge-sort
Input Size: $n=2^m$

Properties of nodes at level i (root is at level 0):
- Input size: 2^{m-i}
- Work: $c2^{m-i}$

Properties of level i:
- Number of nodes at level i: 2^i
- Total work of nodes at level i: $c2^m$

Property of tree:
- Number of levels: $m+1$
- Total work: $c(m+1)2^m$ or $O(n \lg n)$

What if $n \neq \lceil n \rceil$?

- Claim 1: $T(n) = O(T(\lceil n \rceil))$
- Claim 2: $\lceil n \rceil \lg \lceil n \rceil = O(n \lg n)$