Overview

- Homework Problem 2
- Dynamic Search Problems

REMINDER: Exam 1 is one week from today.
NOTE: We’ll have an in-class review on Wednesday.

DYNAMIC Search Problems

- Input: Set of “keyed” records S
- Operations:
 - Add record to S
 - Delete record from S
 - Find record in S with key=x (if one exists)

Dictionary Data Structure

Data structure that supports add, delete, find for set of keyed records.
- Binary search tree
 - Balanced binary search tree
- General search tree
- Hash Table

Binary Search Tree for S

- T is a binary tree
- 1-1 relationship between the nodes in T and the records in S
- BST Property: For any node X in T
 - If node Y is in the left subtree of X then Y.key ≤ X.key
 - If node Y in the right subtree of X then Y.key ≥ X.key

BST

```
4
 / \
3 / \\
1 7
```

Sorting with BST:
In-order Traversal

```
1 7 9 11
```
Insert (5)

Delete(5) (Leaf is easy)

Delete(7) (Node with 1 child is easy)

Delete(8) - Step 1

Delete(8) – Step 2

Operation Run Time
- Search(x) – O(h)
- Insert(x) – O(h)
- Delete(x) – O(h)
Rank

• How can we add rank-finding to the dictionary data structure?

• For each node \(x \) in \(T \):
 – \(\text{count}(x) \) is the number of nodes in the subtree rooted at \(x \).

BST with rank capability

Operation Run Time

• Search\((x)\) – \(O(h) \)
• Insert\((x)\) – \(O(h) \)
• Delete\((x)\) – \(O(h) \)
• Rank\((x)\) – \(O(h) \)
• FindKeyOfRank\((i)\) – \(O(h) \)
Compute rank at root

\[\text{Rank}(x) = \underline{\quad} \]

Compute rank at internal node
(Assume you know rank(w))

\[\text{Rank}(x) = \underline{\quad} \]

Compute rank at internal node
(Assume you know rank(w))

FindKeyOfRank(5) = 8

\[\text{FindKeyOfRank}(5) = 8 \]

Operation Run Time

- Search(x) – \(O(h) \)
- Insert(x) – \(O(h) \)
- Delete(x) – \(O(h) \)
- Rank(x) – \(O(h) \)
- FindKeyOfRank(i) – \(O(h) \)

Keeping a good balance …

- Search trees: \(O(h) \) time per operation
- “Balanced trees” insure \(O(\log n) \) time per operation.
- Different approaches to balance:
 - Red/black trees
 - 2-3 trees
 - AVL trees
 - Treaps
Different balancing rules…

- Red/black trees
- 2-3 trees
- AVL trees
- Treaps

Treaps: Step 1

- S={1,3,5,7,9}
- Each element of S is assigned a unique “heap key”:
 T=(1,15), (3,10), (5,30), (7,0), (9,25)
- S-key satisfy BST Property
- H-key satisfy Heap Property

Treaps: Step 2

- S={1,3,5,7,9}
- Each element of S is assigned a unique “H key”:
 T=(1,15), (3,10), (5,30), (7,0), (9,25)
- Build tree where
 - S-key satisfy BST Property
 - H-key satisfy Heap Property

Treap

T=(1,15), (3,10), (5,30), (7,0), (9,25)
- Root:
- Left subtree:
- Right subtree:
Treaps

- **Claim:** If the heap keys are unique then the treap is unique.
- **Proof:**

Treaps

- Claim: If the heap keys are chosen uniformly at random from $[-B,B]$, where $B > n$, then
 - With high probability the keys will be unique.
 - The expected height of the treap is $O(\lg(n))$.

Treap: Insert $(6,-10)$
Treap: Rotate

```
(1,15)   (3,10)   (6,10)
      |        |
(9,25)  (5,10)  (3,10)
```

Treap: Rotate

```
(6,10)   (7,0)
      |        |
(3,10)  (5,30)
```

Treap: Rotate

```
(1,15)   (3,10)
      |        |
(7,0)   (5,30)
```