Algorithm Design Techniques
- Induction
- Divide and Conquer
- Dynamic Programming
- Greedy
- Reduction

Outline
- **Longest Common Subsequence**
 - Inductive Approach
 - Dynamic Programming
 - Backtracking
- Matrix Chain Multiplication

Longest Common Subsequence
- **Input:** Two sequences (lists) of integers
 \[X = x_1, x_2, \ldots, x_j \text{ and } Y = y_1, y_2, \ldots, y_m \]
- **Output:** A longest subsequence of \(X \) that is also a subsequence of \(Y \)

LCS - Example
- **Input:** \(X = 1, -2, 3, 4, 9, 18 \)
 \(Y = 3, 9, 1, -2, 5, -2, 22, 18 \)
- **Output:** \(Z = 1, -2, 18 \)

LCS\(_{n+1}\) Algorithm
Finds LCS of sequences with \(n+1 \) or fewer elements (total)

Easy cases:
- \(X \) or \(Y \) is empty
 - \(\text{LCS}(\Phi, Y[1\ldots m]) = \)
 - \(\text{LCS}(X[1\ldots j], \Phi) = \)
Harder case
(Assume j>0, m>0)

\[X = x_1, x_2, \ldots, x_{j-1}, x_j \quad \text{and} \quad Y = y_1, y_2, \ldots, y_{m-1}, y_m \]

1. \(x_j = y_m \)

2. \(x_j \neq y_m \)

Run Time

\[T(j, m) = \max(T(j-1, m) + T(j, m-1)), T(m-1, n-1)) + c \]

\[\geq 2T(j-1, m-1) + c \]

\[= \Omega(2^{\min(j, m)}) \]

Run Time Analysis
Many duplicated subtrees

Dynamic Programming
Don’t Recalculate

Dynamic Programming

• \(A(i, k) \) is the length of a longest common subsequence of \(X[1 \ldots i] \) and \(Y[1 \ldots k] \)

• \(A(i, 0) = A(0, k) = 0 \) for \(0 \leq i \leq j \) and \(0 \leq k \leq m \)

• \(A(i, k) \) = maximum of
 - \(A(i-1, k) \)
 - \(A(i, k-1) \)
 - \(A(i-1, k-1) + \text{match}(x_i, y_k) \)

• \(A(j, m) \) is the length of a longest common subsequence of \(X \) and \(Y \)
A(i,j)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>-2</th>
<th>3</th>
<th>4</th>
<th>9</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

LCS - Algorithm

LCS(X=x_1,x_2,...,x_j;Y=y_1,y_2,...,y_m)
For i=0 to j: A(i,0)=0
For i=0 to m: A(0,i)=0
For i=1 to j
 For k=1 to m
 If x_i=y_k then match=1 else match=0
 A(i,k) =max(A(i -1,k),A(i,k -1),A(i-1,k-1)+match))
Return A(j,m)

Run Time Analysis
- Number of table entries:
- Time to compute one entry:
- Run time:

Backtracking

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>-2</th>
<th>3</th>
<th>4</th>
<th>9</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Outline
- Longest Common Subsequence
 - Inductive Approach
 - Dynamic Programming
 - Backtracking
- Matrix Chain Multiplication

Matrix Chain Multiplication
- A is an n x m matrix
- B is an m x k matrix
- How many scalar multiplications are needed to compute AB?
Matrix Chain Multiplication

- A is a 2×5 matrix
- B is a 5×1000 matrix
- C is a 1000×2 matrix.
- How many scalar multiplications are needed to compute ABC?
 - $(AB)C$
 - $A(BC)$

Matrix Chain Multiplication

- Input: A list of $n+1$ integers $p_1, p_2, \ldots, p_{n+1}$
- Output: The minimum number of scalar multiplications needed to compute $\prod_{i=1}^{n} A_i$ where A_i is a $p_i \times p_{i+1}$ matrix.

(Assume a standard matrix multiplication procedure is used; i.e. no Strassen-like improvements.)

MCM$_{n+1}$ Algorithm

Inductive Approach

- Consider an input: $p_1, p_2, p_3, p_4, p_5, p_6$
- Imagine an optimal way of multiplying matrices A_1, A_2, A_3, A_4, A_5:
 $$(A_1(A_2A_3))(A_4A_5)$$

Inductive Approach

- There is some last multiplication
 $$(A_1(A_2A_3))(A_4A_5)$$
Inductive Approach cont.

• There is some last multiplication
 \((A_1(A_2 A_3)) \| (A_4 A_5)\)

• So \(\text{OPT}(A_1, A_2, A_3, A_4, A_5) = \text{OPT}(A_1, A_2, A_3) + \text{OPT}(A_4, A_5) + p_1 p_4 p_5\)

Inductive Approach

• We don’t know where the top split occurs … but clearly \(\text{OPT}(A_1, A_2, A_3, A_4, A_5) = \min_{0<k<5} \text{OPT}(A_1, \ldots, A_k) + \text{OPT}(A_{k+1}, \ldots, A_5) + p_1 p_{k+1} p_5\)

• where \(\text{OPT}(A) = 0\)

Running Time

• \(T(n) = \sum_{0<k<n} T(k) + T(n-k) + c\)
 \[\geq 2T(n-1) + c\]
 \[= \Omega(2^n)\]

Dynamic Programming

• Use a table to store results
• What kind of results?
 – \(M(k,j) = \text{Minimum number of multiplications to compute } \prod_{i=k}^{j} A_i\)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(M(3,5)\) needs \(M(3,3), M(4,5), M(3,4), M(5,5)\)

\(M(k,j)\) needs \(M(i,m)\)
 where \(m-i < j-k\)
Dynamic Programming Algorithm

\[M(k,k) = 0 \]

For \(j, k \) such that \(j-k = 1, 2, \ldots, n-1 \)

\[M(k,j) = \min_{i=k}^{j-1} M(k,i) + M(i+1,j) + p_k p_{i+1} p_j \]

Return \(M(1,n) \)

Input: 2, 3, 1, 5, 4, 8

(A_1 is 2x3, A_2 is 3x1, …)

\[
\begin{array}{|c|c|c|c|}
\hline
0 & 6 & & \\
\hline
0 & 15 & & \\
\hline
0 & 20 & & \\
\hline
0 & 160 & & 0 \\
\hline
\end{array}
\]

MCM Algorithm

- Recursive Algorithm takes exponential time.
- Dynamic Programming takes ________.