Algorithm Design Techniques

- Induction
- Divide and Conquer
- Dynamic Programming
- Reduction
- Greedy

Self-Reduction

Reduction: A \(\propto\) B

Some reductions we’ve seen

- Sorting \(\propto\) Find-max
- General Selection \(\propto\) Find-median
- Almost every dynamic programming problem

To solve A

- One Stage
 - Self-Reduction
- Two Stage
 - Define B
 - Reduce A to B
 - Solve B using self-reduction
Longest Increasing Subsequence
- Input: Sequence of integers X: x_1, x_2, ..., x_n
- Output: Longest increasing subsequence of X; i.e. a subsequence Z: z_1, z_2, ..., z_k such that z_i < z_{i+1} for each i:1...k-1.

Example
- 1, -3, 2, 10, 8, 23, -2, 17, 5

Algorithm for LIS

LIS_{n+1} \propto LIS_n

Don’t know how to do it!!!

To solve A
- Define B (Strengthen the inductive hypothesis)
- Reduce A to B
- Solve B using self-reduction

LIS and Modified LIS
- Input: Sequence of integers X: x_1, x_2, ..., x_n
- Output: Longest increasing subsequence

- Input: Sequence of integers X: x_1, x_2, ..., x_n
- Output: For each i:1...n, a longest increasing subsequence of x_1, ..., x_i that ends in x_i

MLIS(x_1, ..., x_n)
MLIS(x_1, ..., x_n) =
1. LIS of x_1 that ends in x_i
2. LIS of x_i, x_j that ends in x_2
 ...
 n-1. LIS of x_{i-1}, ..., x_{n-1} that ends in x_{n-1}
n. LIS of x_1, ..., x_n that ends in x_n
Example

• 1, -3, 2, 10, 8, 23, -2, 17, 5

To solve A

• Define B
• Reduce A to B
• Solve B using self-reduction

LIS \approx MLIS

To solve A

• Define B
• Reduce A to B
• Solve B using self-reduction

MLIS Self-Reduction

Algorithm for size n or smaller

x_1, \ldots, x_n

Algorithm for size n-1 or smaller.

MLIS(?)

MLIS(X)
MLIS Self-Reduction

Algorithm for size \(n\) or smaller

\[x_1, \ldots, x_n\]

Algorithm for size \(n-1\) or smaller.

\[x_1, \ldots, x_{n-1}\]

MLIS(\(x_1, \ldots, x_n\))

\[\text{MLIS}(x_1, \ldots, x_n) = \]

1. LIS of \(x_i\) that ends in \(x_i\)
2. LIS of \(x_i, x_j\) that ends in \(x_j\)

\[n-1. \text{LIS of } x_1, \ldots, x_{n-1} \text{ that ends in } x_{n-1}\]

\[n. \text{LIS of } x_1, \ldots, x_n \text{ that ends in } x_n\]

Construct MLIS(\(x_1, \ldots, x_n\))

\[\text{MLIS}(x_1, \ldots, x_n) = \]

1) MLIS(\(x_1, \ldots, x_{n-1}\)) plus

2) Choose longest LIS(\(x_1, \ldots, x_j\)) ending in \(x_j\) (j<n) such that \(x_j < x_n\). Append \(x_n\).

Recap: To solve A

- Define B
- Reduce A to B
- Solve B using self-reduction
Grocery Bags

How should we pack \(n \) items weighing \(w_1, w_2, \ldots, w_n \) (\(w_i \leq W \)) in two bags so as to minimize the difference in the weights of the bags?

Or even simpler: What is the smallest possible weight difference?

Self-Reduction

I don’t know how to make this work!

Problem B

- Input: Weights \(w_1, w_2, \ldots, w_n \)
- Output: A binary vector \(T \):
 \(T[i] = 1 \) if some subset of the weights sum to \(i \)
 \(T[i] = 0 \) otherwise
 for \(i = 0, \ldots, nW \)

Transform

\[
\begin{align*}
& t_0 \quad t_1 \quad t_2 \quad t_3 \quad \ldots \quad t_{n-1}W \\
\downarrow & \\
& t_0 \quad t_1 \quad t_2 \quad t_3 \quad \ldots \quad t_{n-1}W \quad \ldots \quad t_{nW}
\end{align*}
\]

Set \(t_i = 1 \) if \(\ldots \) or \(\ldots \)

Else \(t_i = 0 \)
Self-Reduction: Problem B

What are the base cases?

Algorithm B

// initialize
\[t[0] = 1 \]
for \(i = 1, \ldots, nW \)
\[t[i] = 0 \]

// update
for \(i = 1, \ldots, n \)
for \(j = W \cdot i \) to \(w \)
if \(t[j] = 0 \) and \(t[j - w_i] = 1 \) then \(t[j] = 1 \)

We’ll use this later

Algorithm A

Use Algorithm B to compute \(t[0] \ldots t[nW] \)
Let \(S = \sum w_i \)
(Note: \(t[0..S] \) is symmetric about \(S/2 \))
Let \(j \) be the closest index to \(S/2 \) such that \(t[j] = 1 \)
Return \(|j - S/2| \)

Reduction: \(A \propto B \)

Algorithm for Problem A

Algorithm for Problem B

TRANSFORM

TRANSFORM

Input

Output

Grocery Bags

What about this problem?

How should we pack \(n \) items weighing \(w_1, w_2, \ldots, w_n \) \((w_i \leq W) \) in two bags so as to minimize the difference in the weights of the bags?

Or even simpler: What is the smallest possible weight difference?
Algorithm B: Pack Bags

// initialize
t[0]=1
for i=1,…,nW
t[i]=0, b[i]=0

// update
for i=1,…,n
for j=W*i to w,
if t[j]=0 and t[j-w]=1 then t[j]=1 & b[j]=i

Algorithm A: Pack Bags

Cont. … Let j be the closest index to S/2 such that t[j]=1
Bag 1 = Bag 2 = empty
While j>0
Put item b[j] in Bag 1
j -= b[j]
Put unpacked items in Bag 2
Return

Algorithm A

• Is it correct?

• Is it efficient?