Reductions to Network Flow Problem

- Bipartite Matching ≈ Network Flow
- The Gee-ball Problem ≈ Network Flow

Matching

- Let $G=(V,E)$ be a graph.
- $E' \subseteq E$ is a matching if every vertex of V is incident to at most one edge of E'.

Matching Example

Bipartite Graph

- Let $G=(V,E)$ be a graph.
- G is bipartite if V can be partitioned into V_1 and V_2 such that no pair of vertices in V_i (i=1,2) have an edge.

Bipartite Example

Bipartite Matching

- Input: Bipartite graph G
- Output: A largest matching of G
Bipartite Matching \propto Network Flow

- Transform Input – Step 1

Bipartite Matching \propto Network Flow

- Transform Input – Step 2

Reductions to Network Flow Problem

- Bipartite Matching \propto Network Flow
- The Gee-ball Problem \propto Network Flow

Matching

- Let $G=(V,E)$ be a graph.
- $E' \subseteq E$ is a matching if every vertex of V is incident to at most one edge of E'.
Matching Example

Let $G=(V,E)$ be a graph.

- G is bipartite if V can be partitioned into V_1 and V_2 such that no pair of vertices in V_i ($i=1,2$) have an edge.

Bipartite Graph

Bipartite Example

Bipartite Matching

- Input: Bipartite graph G
- Output: A largest matching of G

Bipartite Matching \Leftrightarrow Network Flow

- Transform Input – Step 1

Bipartite Matching \Leftrightarrow Network Flow

Algorithm for Problem Bipartite Matching

Algorithm for Problem Network Flow

Diagram:

Input \rightarrow Transform \rightarrow Output

Diagram:

Input \rightarrow Transform \rightarrow Output

Diagram:

Input \rightarrow Transform \rightarrow Output

Diagram:

Input \rightarrow Transform \rightarrow Output
Bipartite Matching ∝ Network Flow

- Transform Input – Step 2

\[
\begin{array}{c}
\text{s} & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Bipartite Matching ∝ Network Flow

- Transform output

\[
\begin{array}{c}
\text{s} & 1/1 & 1/1 & 1/1 & 1/1 \\
1/1 & 1/1 & 1/1 & 1/1 & 1/1 \\
\end{array}
\]

Reduction

- Is it correct?
- Is it efficient?

Integrality theorem

- If the capacities in a network are integral, then the max flow can be achieved with integral flows on each edge.
- Further the Ford-Fulkerson method yields an integral solution.

Proof of correctness

There is a 1-1 correspondence between 0/1 flows in the network and matchings in the input graph.
Reduction

- Is it correct?
- Is it efficient?
 \[T_{BM}(n) = cn + T_{BF}(n+2) \]

Reductions to Network Flow Problem

- Bipartite Matching \(\preceq \) Network Flow
- The Gee-ball Problem \(\preceq \) Network Flow

The Gee-ball Problem

- The southwestern conference of the gee-ball league consists of \(n+1 \) teams. Team \(n+1 \) is from HMC.
- We want to know whether it is possible for HMC to win more games this season than any other team in the conference.
- No ties allowed.

Example

- The teams are Pitzer, CMC, Pomona, and HMC
- Games won so far:
 - Pitzer 4, CMC 3, Pomona 2, HMC 2
- Games to play:
 - 1 game: Pitzer vs. HMC
 - 2 games: Pomona vs. HMC

The Gee-ball Problem

- Teams \(t_1, t_2, \ldots, t_n, t_{n+1} \)
- So far this year team \(i \) has won \(w_i \) games.
- Teams \(i \) and \(j \) will play each other \(g_{ij} \) more times this season (\(g_{ij} = g_{ji} \)).

Gee-ball \(\preceq \) Network Flow

Gee-ball \(\preceq \) Network Flow

\[\begin{align*}
\text{Input} & \quad \text{Algorithm for Gee-ball} \\
& \quad \text{Algorithm for Network Flow} \\
& \quad \text{Output}
\end{align*} \]
Transform Input

1. Create a source s.
2. Create vertex $v_{i,j}$ for $1 \leq i < j \leq n$
3. Create edge from s to $v_{i,j}$ with capacity $g_{i,j}$

Let $w = w_{n+1} + \sum_{i=1}^{n} g_{n+1,i}$

4. Create vertices u_i, $1 \leq i \leq n$
5. Create edge from $v_{i,j}$ to u_i and u_j with infinite capacity.