Algorithm Design Techniques

- Induction
- Divide and Conquer
- Dynamic Programming
- Reduction
- **Greedy**
 - Kruskal’s algorithm for MST

Greedy Paradigm
Get what you can NOW!

But sometimes it’s better to look around!

But sometimes it isn’t …

I hate gas stations!

- I’m driving cross country and my route is fixed.
- My map tells me exactly where every gas station along the route is located.
- I want to minimize the number of times I stop for gas...
 - … without running out!

Greedy

- First stop
 - I’ll stop at the farthest gas station I can get to without running out.
- Then repeat
Greedy is Optimal!

- Can the optimal make a first stop that is later?

Minimum Spanning Tree

- Input: Weighted graph G
- Output: Minimum weight spanning tree of G

Weighted Graph

- $G = (V, E)$ is a connected, weighted graph with n vertices and m edges.

Spanning Tree

- A spanning tree of G is a connected, acyclic subgraph with vertex set V.

Weight of Spanning Tree

- The weight of spanning tree of G is the sum of the weights of its edges.

Minimum Spanning Tree

- A minimum spanning tree of G is one with smallest possible weight.
- Find an MST of the following graph:
Kruskal’s (Greedy) Algorithm

Let e_1, e_2, \ldots, e_m be the edges of G sorted by increasing weight.

$F=V$ (F is a forest of isolated vertices)
For $i=1$ to m
 If $F+\{e_i\}$ is acyclic then $F=F+\{e_i\}$.

Return(F)

Kruskal’s Algorithm

• Order the edge weights. (In this graph the weights are unique.)
• 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Kruskal’s Algorithm-cont.
• 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Kruskal’s Algorithm-cont.
• 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Kruskal’s Algorithm-cont.
• 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Kruskal’s Algorithm-cont.
• 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Kruskal’s Algorithm-cont.

• 1,2,3,4,5,6,7,8,9,10,11,12,13
• Can we add the edge with weight 7?

MST of G with cost _______

Kruskal’s Algorithm-cont.

• 1,2,3,4,5,6,7,8,9,10,11,12,13
• Can we add the edge with weight 8?

Kruskal’s Algorithm-cont.

• 1,2,3,4,5,6,7,8,9,10,11,12,13
• Does it work in general?
• Prove it.
Cut

- A cut is a partition of the vertices of G into two sets (R, B).
- An edge e crosses the cut if it has an endpoint in each set of the cut.
- Which edges cross the (R, B) cut?

Tree Facts

- A tree on n nodes has $n-1$ edges.

Tree Facts

- If e is an edge of T then $T \{-e\}$ is a forest consisting of two trees.

Tree Facts

- If e is an edge of G but not of T then $T+\{e\}$ contains exactly one cycle.

Tree Facts

1. A tree on n nodes has $n-1$ edges.
2. If e is an edge of T then $T\{-e\}$ is a forest consisting of two trees.
3. If e is an edge of G but not of T then $T+\{e\}$ contains exactly one cycle.

Kruskal’s Algorithm

Proof of Correctness

Claim:
At each stage of the algorithm F is a subgraph of some MST of G.
Kruskal’s Algorithm

Let e_1, e_2, \ldots, e_m be the edges of G sorted by increasing weight.

$F = V$ (initially a forest of isolated vertices)

For $i = 1$ to m

If $F + \{e_i\}$ is acyclic then $F = F + \{e_i\}$.

Return(F)

Loop Invariant

Let e_1, e_2, \ldots, e_m be the edges of G sorted by increasing weight.

$F = V$ (initially a forest of isolated vertices)

Claim is true here

For $i = 1$ to m

If $F + \{e_i\}$ is acyclic then $F = F + \{e_i\}$.

Return(F)

Claim is true here

Kruskal’s Algorithm

Proof of Correctness

Loop Invariant:

F is a subgraph of some MST of G.

Proof

Consider the k^{th} execution of the loop. Let T be a MST of G containing F. What can happen during the loop?

1. e_k is not added to F
 - In this case F does not change so the claim holds when execution of loop concludes
2. e_k is added to F

What do we know?

Assume $e_k = (u, v)$. The vertices u and v are in separate connected components. Let S be the vertices of F_v.

![Diagram](image-url)
What do we know?

e_k is a minimum weight edge spanning $(S, V-S)$.

Using our tree facts

- The graph $T+\{e_k\}$ contains exactly one cycle.
- This cycle contains e_k and at least one additional edge e that spans $(S, V-S)$.
- $T+\{e_k\}-\{e\}$ is an MST of G.

Moreover

- $T+\{e_k\}-\{e\}$ is an MST of G that contains the edges of $F+\{e_k\}$.

Running Time

- We’ll save that for later…

Dykstra’s Algorithm

Number in node u indicate $d_G(s, u)$

Prim’s Algorithm

(Another Greedy Algorithm)

Choose a vertex $w \in V$

$F=\{w\}$

While $V-F \neq \emptyset$

Let e be a minimum weight edge that emerges from F

$F=F+\{e\}$
Prim’s example

Start with red vertex

Prim’s example

Prim’s example

Prim’s example

Prim’s example

Prim’s example
Prim’s example

Prim’s Algorithm

• Is it correct?
• Is it efficient?