Outline

- MST: Run Time analysis
 - Prim’s
 - Kruskal’s
- Single Source Shortest Path
 - Breadth-First Search
 - Dykstra’s algorithm

Prim’s Algorithm

Choose a vertex \(w \in V \)
\(F = \{ w \} \)

While \(V - F \neq \emptyset \)

Let \(e \) be a minimum weight edge that emerges from \(F \)
\(F = F + \{ e \} \)

Running Time: \(O(nm) \)

Consider naïve approach …

- Go through edge list to find least weight edge emerging from \(F \):
 - 6, 13, 7, 3, 5, 8, 1, 11, 2, 10, 9, 12, 4

Prim’s example

Consider naïve approach …

Running Time: \(O(nm) \)

Prim’s Algorithm

Choose a vertex \(w \in V \)
\(F = \{ w \} \)

While \(V - F \neq \emptyset \)

Let \(e \) be a minimum weight edge that emerges from \(F \)
\(F = F + \{ e \} \)

Naïve approach \(O(m) \)
What to do?

A less naïve approach …

List of fringe vertices and for each its minimum weight edge to F
[b,2], [d,3], [a,5],[c,10]

Prim’s Algorithm
A Better Implementation

Choose a vertex x ∈ V
F={x}, H=φ
For each e=(u,x): Add record [u,e] to heap H
keyed on w(e)
While H ≠ φ
[u,e]=Find-min(H)
Add u and e to F
For each edge incident to u: Update heap
Are these standard operations?
- Extract-min
- Add element to heap
- Reduce key of element in heap ??!

Decrease key
- Next homework assignment: Design decrease key algorithm for heaps that runs in time $O(\lg(n))$.

Prim's Algorithm
Running Time
Choose a vertex $x \in V$
$F = \{x\}, H = \emptyset$
For each $e = (u, x)$: Insert
While $H \neq \emptyset$
- $[u, e]$: Extract-min(H)
- Add u and e to F
For each edge incident to u: Insert or Decrease-key or do nothing

Prim's Algorithm
Running Time
- Heap operations across algorithm:
 - n Extract-mins $O(\lg(n))$ each
 - n Inserts $O(\lg(n))$ each
 - $m - n$ Decrease-keys $O(\lg(n))$ each
 - m Do nothings $O(1)$ each
- Total time is $O(m \lg(n))$

But wait … suppose we could decrease-key in time $O(1)$
- Heap operations across algorithm:
 - n Extract-mins $O(\lg(n))$ each
 - n Inserts $O(\lg(n))$ each
 - $m - n$ Decrease-keys $O(1)$ each
 - m Do nothings $O(1)$ each
- Then total time is $O(m + n \lg(n))$

Bravo, bravo …
Do It With Fibonacci Heaps

Huh?

Don’t worry – it works!

Kruskal’s Algorithm

Let \(e_1, e_2, \ldots, e_m \) be the edges of \(G \) sorted by increasing weight.

\[F = V \]

For \(i=1 \) to \(m \)

\[\text{If } F + \{ e_i \} \text{ is acyclic then } F = F + \{ e_i \}. \]

\[\text{Return}(F) \]

Kruskal’s Algorithm

- \(O(m \log m + nm) \)

But Wait …

Data Structures

Union-Find Data Structure

- Disjoint-sets: \(S_1, S_2, \ldots, S_k \)
- Operations:
 - MakeSet(x)
 - Union(x,y)
 - FindSet(x)

Kruskal’s Algorithm

Let \(e_1, e_2, \ldots, e_m \) be the edges of \(G \) sorted by increasing weight.

\[F = V \]

For \(i=1 \) to \(m \)

\[\text{If } F + \{ e_i \} \text{ is acyclic then } F = F + \{ e_i \}; \]
\[\text{Assume } e_i = (u,v) \]
\[\text{If } \text{FindSet}(u) \neq \text{FindSet}(v) \text{ then } \text{Union}(u,v) \]
\[\text{Return}(F) \]
Union-Find Data Structure
- Disjoint-sets: S_1, S_2, \ldots, S_k
- Operations:
 - MakeSet(x) $O(1)$
 - Union(x, y)
 - FindSet(x)

Running Time Analysis
- Prim’s (and Dijkstra’s)
 - Binary heap: $O(m \lg(n))$
 - Fibonacci heaps: $O(m+n \lg(n))$
- Kruskal’s
 - DFS: $O(m \lg(m) + n^2)$
 - Union Find: $O(m \lg(m))$

Single Source Shortest Path
- Input: Graph G with a designated start vertex s.
- Output: For each vertex v, the distance between s and v.

Defs: Path Length, Distance
- In an unweighted graph
 - the length of a path is the number of edges in the path
 - the distance between two vertices is the length of a shortest path between the vertices
- We use $d_G(u,v)$ to denote the distance between u and v in G

Example: Distance
- $d_G(s,s)=0$, $d_G(s,u)=1$, $d_G(s,v)=2$

Shortest path tree for s
A spanning tree of G such that the path between s and a vertex v in T is a shortest path in G.

Does such a tree always exist?
Proof of Existence:
Shortest path tree for s

• Order the vertices of G by distance from s:
 \(v_0 = s, v_1, v_2, \ldots, v_n \)
• Claim: There is a subtree T of G on vertices \(\{v_0, \ldots, v_i\} \) such that for every \(v_j \)
 \(d_T(s,v_j) = d_G(s,v_j) \).

Base Case

• When \(i = 0 \) the claim holds.

Inductive Hypothesis

• There is a tree T such that \(d_T(s,v) = d_G(s,v) \) for each \(v \in \{s=v_0, \ldots, v_{i-1}\} \)

Now add \(v_i \)

• We need to exhibit T such that \(d_T(s,v_i) = d_G(s,v_i) \)
 for each \(v \in \{s=v_0, \ldots, v_{i-1}, v_i\} \).

Observe

• Let \(s, \ldots, u, v_i \) be a shortest path between s and \(v_i \) in G.
• Since \(i > 0 \) \(u \neq v_i \).
• Thus \(d_G(s,v_i) = 1 + d_G(u,v_i) > d_G(s,u) \).
• Therefore \(u \) precedes \(v_i \) in the ordering of vertices; i.e. \(u = v_j \) for some \(j < i \).

Proof of Claim

• So \(u \) is already in T and, by our induction hypothesis, \(d_G(s,u) = d_T(s,u) \).
\[T' = T + (u, v_i) \]

- \(d_T(s, v_i) = 1 + d_G(s, u) = d_G(s, v_i) \)

QED

Shortest path tree for \(s \)

The path between \(s \) and \(v \) in \(T \) is a shortest path in \(G \).

The edges traversed in Breadth-First(s) form shortest path tree for \(s \).

Breadth-first(s) tree:

All vertices and the edges traversed

Breadth-first(s)

\(Q = 2, 3, 4 \)

Breadth-first(s)

\(Q = 3, 4, 5, 6 \)
Single Source Shortest Path

- **Input:** Graph G with a designated start vertex s.
- **Output:** For each vertex v, the length of the shortest path between s and v.
- **Algorithm:** Modify Breadth-first to compute $d(s,v)$ along the way.
Breadth-first search
Compute distance from s

Running Time
- The modified breadth-first algorithm for single source shortest path in an unweighted graph is: ___________________

What if G is weighted?

Single Source Shortest Path
- Input: Weighted graph G with a designated start vertex s. Weights are positive!
- Output: For each vertex v, the length of the shortest path between s and v.

Path Length
- In a weighted graph the length of a path is the sum of the weights of the edges of the path.

Shortest path tree for s
The path between s and v in T is a shortest path in G.
Shortest path tree for s

- Is it clear such a tree exists? YES by same argument.

- Claim: Let the vertices of G be sorted by distance from s. Then there is a subtree T of G on vertices $\{v_0, \ldots, v_i\}$ such that $0 \leq i \leq |V|$, $d_T(s, v) = d_G(s, v)$ for each v in T.
- If you have a tree for $\{v_0, \ldots, v_i\}$ can you find the tree for $\{v_0, \ldots, v_i, v_{i+1}\}$?

Shortest path tree for s

- Suppose you don’t know the ordering?

- At each step find the vertex $v \notin T$ that minimizes $\min_{u \in T} d_T(s, u) + w(u, v)$.

Dijkstra’s Algorithm

Number in node u indicate $d_G(s, u)$
Dykstra’s Algorithm
Number in node u indicate $d_G(s,u)$
Dykstra’s Algorithm

Number in node u indicate $d_G(s,u)$

Does this sound familiar?

- Prim’s algorithm for MST is VERY similar.
- The implementation details are almost identical.

All Pairs Shortest Path
(directed version)

- Input: Weighted digraph G
- Output: For each pair of vertices x,y the distance between x and y in G

What is $d(b,a)$?

What is $d(b,a)$?
Three Cases:

- There is no path from \(a \) to \(b \)
- There is a path from \(a \) to \(b \) but no shortest path
- There is a shortest path from \(a \) to \(b \)

Shortest path algorithm should

- Determine which case holds
 - There is no path from \(a \) to \(b \)
 - There is a path from \(a \) to \(b \) but no shortest path
 - There is a shortest path from \(a \) to \(b \)
- Find the length of the shortest path when one exists

All Pairs Shortest Path

Inductive definition

Solve and then what?

K-limited paths

- A path from \(v_i \) to \(v_j \) is \(k \)-limited if the intermediate vertices in the path are numbered \(k \) or less

3-limited paths

What is the shortest 5-limited path from \(v_1 \) to \(v_2 \)?
Floyd-Warshall algorithm

- $D^k(i,j)$ is the length of a shortest k-limited path from v_i to v_j
- $D^k(i,j) = \min(D^{k-1}(i,j), D^{k-1}(i,k) + D^{k-1}(k,j))$
- $D^0(i,j) = w(<v_i,v_j>)$
Floyd-Warshall algorithm

- \(D^0(i,j) = w(v_i, v_j) \)
- For \(i=1 \) to \(n \)
 - Compute \(D^i \) from \(D^{i-1} \)
- Return \(D^n \)
Floyd-Warshall algorithm
Running Time

• n Tables
• Each is n X n
• Each table entry takes O(1)

• O(n^3)