Digraph notions

• Vertex y is \textit{reachable} from x if there is a directed path in G from x to y.
 (By convention x is reachable from x by a directed path of length 0.)
• Vertices x and y are \textit{strongly connected} if x is reachable from y and y is reachable from x.
• Vertices x and y are \textit{weakly connected} if they are in the same connected component of the undirected version of G.

Strongly-connected vertices?

This means there are edges in both directions!

Weakly-connected vertices?

Strongly-connected vertices:

Weakly-connected vertices:

Digraph notions cont.

• Strongly connected is an equivalence relation; the equivalence classes are called \textit{strongly connected components}.
• Weakly connected is an equivalence relation; the equivalence classes are called \textit{weakly connected components}.
DFS Applications

- Identify the strongly connected components of a digraph G.
- Identify the weakly connected components of a digraph G. Easy! Do on your own.

DFS(G)

While G has an unvisited vertex x:
 DFS(x)

We'll choose these in alphabetical order

Note: DFS is overloaded!

DFS(x)

Mark x visited
For each edge <x,y>
 If y is unvisited then
 DFS(y)

We'll choose these in alphabetical order

DFS(a)

Visit a
Find <a,d> edge and call DFS(d)

Visit d
All out-edges checked so return

Call Stack:
 DFS(a)
 DFS(d)
 DFS(G)

DFS(d)

Visit d
All out-edges checked so return

Call Stack:
 DFS(d)
 DFS(a)
 DFS(G)
DFS(a)
Alphabetical priority
Visit a
Find <a,d> edge and call
DFS(d)
All out-edges checked so return

Call Stack:
DFS(a)
DFS(G)

DFS(G)
Alphabetical priority
a is unvisited so DFS(a)
b is unvisited so DFS(b)

Call Stack:
DFS(G)

DFS(b)
Alphabetical priority
Visit b
Find edge <b,c> and call
DFS(c)

Call Stack:
DFS(b)
DFS(G)

DFS(c)
Alphabetical priority
Visit c
Find edge <c,a> – no action
Find edge <c,b> – no action
All out-edges checked so return

Call Stack:
DFS(c)
DFS(b)
DFS(G)

DFS(b)
Alphabetical priority
Visit b
Find edge <b,c> and call
DFS(c)
Find edge <b,d> – no action
All out-edges checked so return

Call Stack:
DFS(b)
DFS(G)

DFS(G)
Alphabetical priority
a is unvisited so DFS(a)
b is unvisited so DFS(b)
All nodes checked so return

Call Stack:
DFS(G)
What is the running time of DFS?

- $O(m+n)$
- Every vertex is pushed onto the stack once and popped from the stack once.
- Each out-edge is inspected once.

SCC Problem

- Input: Digraph G
- Output: The strongly connected components of G.

Naïve Algorithm

For each pair of vertices x and y:

- If x is reachable from y and y is reachable from x then x and y are strongly connected.

Run DFS

Naïve Algorithm

For each pair of vertices x and y:

- If x is reachable from y and y is reachable from x then x and y are strongly connected.

Mark the vertices unvisited
DFS(y)
If x is marked visited then x is reachable from y Else x is not reachable from y

Naïve algorithm

- Worst case: _______ calls to DFS(x) so the running time is ___________

All little more sophistication please…

- We can find the strongly connected components of G with two calls to DFS(G)
- Three ideas
 - DFS Forest
 - Timestamps
 - Reversal of G
DFS Forest

- The DFS Forest of G is the subgraph consisting of
 - Every vertex of G
 - Each edge traversed in DFS(G)

![Graph G](image)

DFS tree of G: \rightarrow

Different selection rules give different results

WARNING

- DFS Forests are sometimes

What can we say?

- If the DFS forest of G ____________ then x and y are strongly connected.
- If x and y are strongly connected then ____________

DFS Forest

- If x and y are strongly connected then they are in the same tree of (every) DFS forest of G.

![Strongly connected components of G](image)

DFS Forest

Strongly-connected in G is a refinement of the weakly connected relation of any DFS forest of G

![Strongly connected components of G](image)
DFS forest of G
Three ideas

• DFS Forest of G
• Timestamps
• Reversal

DFS(G)
Alphabetical order

Record first-arrival and last-departure times.

<table>
<thead>
<tr>
<th>First-arrival</th>
<th>Last-Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

DFS(G)
Alphabetical order

<table>
<thead>
<tr>
<th>First-arrival</th>
<th>Last-Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>5</td>
</tr>
<tr>
<td>c</td>
<td>6</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
</tbody>
</table>

Three ideas

• DFS Forest
• Timestamps
• Reversal of G

G^R: Reverse the edges of G

G

G^R

$(G^R)^R$: Reverse the edges of G^R

$(G^R)^R = G$
Reachability

\[X \text{ is reachable from } Y \text{ in } G \iff Y \text{ is reachable from } X \text{ in } G^T \]

SCC

The Strongly Connected Components of \(G \) and \(G^R \) are the same!

SCC Algorithm

- DFS(\(G \)) with timestamp
- DFS(\(G^R \)) using last-departure time decreasing order to produce a DFS forest \(F \) of \(G^R \)
- If \(x \) and \(y \) are weakly in \(F \) if and only if they are strongly connected in \(G \).

DFS(G)

<table>
<thead>
<tr>
<th></th>
<th>First-arrival</th>
<th>Last-Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>c</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

DFS(\(G^R \))

Order: \(b,c,a,d \)

DFS Forest

Order: \(b,c,a,d \)
Correctness

Claim: If x and y are in the same strongly connected component of G if and only if x and y are in the same tree of the DFS forest of G.

Claim ⇒
If x and y are in the same strongly connected component of G then they are in the same tree of the DFS forest of G.

Claim ⇒
If x and y are in the same strongly connected component of G then they are in the same tree of the DFS forest of G.

Claim ⇐
If x and y are in the same tree of the DFS forest of G then they are in the same strongly connected component of G.

Claim ⇐
If x and y are in the same tree of the DFS forest of G then they are in the same strongly connected component of G.

1. Show x and r are strongly connected in G.
2. Show y and r are strongly connected in G.

Claim ⇐
x and r are strongly connected in G

1. Since x is reachable from r in G, r is reachable from x in G.
2. Since ___________________, x is reachable from r in G.
Notice

- Last-departure(x) < Last-departure(r).
- If Last-departure(x) < First-arrival(r) then r is not reachable from x in G ⇒ ⇐. So Last-departure(x) > First-arrival(r)
- Hence
 First-arrival(r) < First-arrival(x) < Last-departure(x) < Last-departure(r)

Claim ⇐

x and r are strongly connected in G
1. Since x is reachable from r in G, r is reachable from x in G.
2. Since First-arrival(r) < First-arrival(x) < Last-departure(x) < Last-departure(r), x is reachable from r in G.

Claim ⇐

If x and y are in the same tree of the DFS forest of G^r then they are in the same strongly connected component of G.

Correctness

Claim: If x and y are in the same strongly connected component of G if and only if x and y are in the same tree of the DFS forest of G^r.

Running Time

- We can find the strongly connected components of G in _______________
 - How do we represent G?
 - Do we have to sort the vertices by last-departure time?