Evolutionary Computation

Some References

Zbigniew Michalewicz
Genetic Algorithms + Data Structures = Evolution Programs
3rd edition, Springer-Verlag, 1993

David Goldberg

Evolutionary Computation

- Evolutionary algorithms
- Genetic algorithms
- Genetic programming
- Artificial life (“alife”)

Historical

- 1966, Fogel, Owens, and Walsh, Artificial Intelligence through Simulated Evolution, John Wiley & Sons
- Looked at derivation of
 - finite-state machines
 - controllers
 - data reduction through successive mutations

Among Mr. Holland’s Opuses

- See http://www.pscs.umich.edu/jhfest/jhh-pub.html for more.
Holland’s Progeny
- David Goldberg
- Stephanie Forrest
- Kenneth DeJong
- Melanie Mitchell
- John Koza
- many others

See http://www.pscs.umich.edu/jhfest/schedule-closed.html for Festschrift papers.

Today

Genetic Algorithms
- An approach to difficult optimization problems (TSP, etc.)
- Heuristic, not guaranteed to find true optima
- Finds good approximations fast

GA Applications
- Hundreds, if not thousands
- All manner of optimization problems in engineering, science, finance, etc.
- Application to neural networks:
 - Evolve the structure and/or weights of a neural network, rather than train it.

Principles of Natural Selection
- Concentrate on population rather than a single individual
- Individuals that are fit enough to survive will reproduce
- Create new individuals from existing ones
 - Crossover
 - Mutation

Genetic Flow Diagram

```
<table>
<thead>
<tr>
<th>Population</th>
<th>Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection criterion</td>
<td></td>
</tr>
<tr>
<td>Subset of Population</td>
<td></td>
</tr>
</tbody>
</table>
```

until an individual exists satisfying performance criterion or resources are exhausted
Common Operators

- **Copy** (aka Reproduce): An individual from the current generation is copied into the next generation.
- **Crossover**: Two (or more) individuals from the current generation are used to form an individual in the next generation.
- **Mutate**: A single individual from the current generation is mutated to form an individual in the next generation.

Individuals

- Individuals are represented by their genome, or **genotype**.
- The genotype may be the “program” for the actual individual, or **phenotype**.

Genetic Algorithm Example

- Consider the “subset sum” problem:
 - Given a set of integers S and a target value T, find a subset of S that the maximum sum **without exceeding** T.

Genetic Approach

- As the genome, use a bit-vector.
- There is one bit for each element in the set S.
- The bit is 1 if the element is in the subset.

Example

- $S = \{19, 23, 35, 52, 61, 68, 76, 84, 92\}$
- $T = 200$
- Genome is an element of $\{0, 1\}^9$
- Possible individuals:
 - 010001001, sum$(23, 68, 92) = 183$
 - 101000010, sum$(19, 35, 84) = 138$
What can we try to produce more fit individuals?

- **Mutation**: change a random bit:
 - 101000010, $\text{sum}(19, 35, 84) = 138$
 - 11100010, $\text{sum}(19, 23, 35, 84) = 161$

Fatal Mutations

- Note that a mutation could be “fatal”, resulting in a totally unfit individual. The “carcass” of this individual could still be in the next generation, however.

What can we try to produce more fit individuals?

- **Crossover**: Combine two individuals
 - 001110000, $\text{sum}(35, 52, 61) = 148$
 - 100001100, $\text{sum}(19, 76, 84) = 179$

 New genomes:
 - 001000110, $\text{sum}(35, 76, 84) = 195$
 - 100110000, $\text{sum}(19, 52, 61) = 132$

Crossover Variations

- Sometimes two crossover points are chosen, rather than one, and the subsequences between them are swapped.

 - Just as with mutation, crossover could produce one or more individuals that are totally unfit.

Sample GA Program

- The program
 /cs/cs152/ga/subsum/subsum.java
 carries out the genetic algorithm on this problem.

 - Examples:
 - go ss1.in
 - go ss2.in

Main Loop of the Subset Sum GA Program (1)

```java
public void evolve(int generations) {
    for( generation = 0; generation < generations; generation++ ) {
        retain(); // retain the more fit individuals
        crossover(); // perform crossover on those retained
        mutate(); // mutate the resulting population
        sort(); // sort by fitness
    }
}
```
Sample Run of subsum (1)

Subset sum problem
generations = 100
population size = 10
retain size = 5
immutable = 5
mutation rate = 0.1
target = 200.0
values = (19 23 35 52 61 68 76 84 92)

generation 0, average fitness = 33.7:
181/200 (r 19) 000111000 52 61 68
164/200 (r 36) 100010010 19 61 84
-1/200 (r 201) 000111110 61 68 76 84
-1/200 (r 201) 010111000 23 52 61 68
-1/200 (r 201) 000011010 61 76 84
-1/200 (r 201) 000111110 52 61 68 76 84
-1/200 (r 201) 101101110 19 35 52 68 76 92
-1/200 (r 201) 000011110 61 68 76 84
-1/200 (r 201) 001100110 35 52 68 76 84

only two fit individuals

Sample Run of subsum (2)
generation 1, average fitness = 64.4:
181/200 (r 19) 000111000 52 61 68
164/200 (r 36) 100010010 19 61 84
160/200 (r 40) 000000110 76 84
145/200 (r 55) 000010110 61 68 76
-1/200 (r 201) 000011110 61 68 76 84
-1/200 (r 201) 010111000 23 52 61 68
-1/200 (r 201) 000000110 76 84
-1/200 (r 201) 000010110 61 76 84
-1/200 (r 201) 000011110 61 68 76 84

four fit individuals

Sample Run of subsum (3)
generation 2, average fitness = 114.3:
197/200 (r 3) 000110010 52 61 84
181/200 (r 19) 000111000 52 61 68
164/200 (r 36) 100010010 19 61 84
160/200 (r 40) 000000110 76 84
148/200 (r 52) 100011000 19 61 68
145/200 (r 55) 000010010 61 84
96/200 (r 104) 001010000 35 61
54/200 (r 146) 101000000 19 35
-1/200 (r 201) 000000110 76 84
-1/200 (r 201) 001100101 35 52 68 76 84

eight fit individuals

Sample Run of subsum (4)
generation 5, average fitness = 157.7:
200/200 (r 0) 100111000 19 52 61 68 84
197/200 (r 3) 000110010 52 61 84
197/200 (r 3) 000111000 52 61 68
181/200 (r 19) 000111000 52 61 68
181/200 (r 19) 000111000 52 61 68
179/200 (r 21) 001100001 35 52 92
164/200 (r 36) 100010010 19 61 84
164/200 (r 36) 100010010 19 61 84
115/200 (r 85) 101010000 19 35 61
-1/200 (r 201) 000111010 52 61 68 84

best possible fit reached in generation 5

Complexity Considerations
- All possible subsets of n values can be enumerated in \(2^n\) steps.
- For low n (say in the 20’s or less), this might be feasible.
- For larger n, it is not \((2^n)^2 = \text{about 5 billion}\).
- For large n, the genetic algorithm can produce good, if not optimal, answers in much less time than enumeration.
Other Genomes

- A bit vectors is not the only way, or necessarily the best way, to represent a genome.
- Other possibilities:
 - A list or matrix of integers or floats

Challenges in representing Genomes: Traveling Salesperson Problem

- Not every optimization problem has a genome encoding that will allow naïve mutations and crossovers.
- Consider the TSP:
 - An instinctive way to represent a genome is as a permutation of the cities on a tour.

Crossing two Permutations

- [1, 3, 2, 6, 5, 4]
 - [2, 3, 4, 1, 6, 5]
- Crossover points selected at random
- Result of naïve crossing:
 - [1, 3, 4, 1, 6, 5]
 - [2, 3, 2, 6, 5, 4]
- Unfortunately, these sequences are not permutations.

Reinterpreting permutation crossings

- Interpret as:
 - Insert 2,6,5 in the second genome at the first crossover point and remove those elements from wherever they occurred in the second genome.

Similarly, to produce the second new genome

- [1, 3, 2, 6, 5, 4]
 - [2, 3, 4, 1, 6, 5]
- Crossover points selected at random
- [1, 3, 2, 6, 5, 4]
 - [2, 3, 4, 1, 6, 5]
- Insert 3, 4, 1, 6, 2, 5
Net effect of Crossover

- [1, 3, 2, 6, 5, 4]
- [2, 3, 4, 1, 6, 5]
- [3, 4, 1, 6, 2, 5]
- [3, 2, 6, 5, 4, 1]

- The results share some of the structure of both parents, which is desirable.

Keller’s TSP GA

- /cs/cs152/ga/tsp
- Uses same overall loop as the subset sum algorithm.
- The genome is now a permutation vector.
- Crossover is as described.
- Mutation consists of swapping two random elements of the permutation.

TSP GA in operation (1)

Traveling Salesperson Problem
- generations = 1000
- population size = 50
- retain size = 25
- immutable = 15
- mutation rate = 0.1

TSP GA in operation (2)

TSP GA in operation (3)

Improv ement in generation 1: 25: 4 6 10 14 9 11 7 12 3 5 13 1 0 8 2
Improv ement in generation 9: 22: 4 6 14 9 11 7 12 10 3 5 13 1 0 8 2
Improv ement in generation 10: 20: 4 6 9 14 10 11 7 12 3 5 13 1 0 8 2
Improv ement in generation 30: 18: 4 6 9 14 10 12 7 11 3 5 13 1 0 8 2
best after 1000 generations, 17: 4 6 9 14 10 12 5 13 3 11 7 1 0 8 2
verification: 4 (1.0) 6 (1.0) 9 (2.0) 14 (1.0) 10 (1.0) 12 (1.0) 5 (2.0) 13 (1.0) 3 (1.0) 11 (1.0) 7 (1.0) 1 (1.0) 0 (1.0) 8 (1.0) 2 (1.0) 4

Roulette- Wheel Optimization

- Rather than keep n copies of the same individual, record the individual once, along with its % of the population.
- Then during selection, choose individuals by spinning a “roulette wheel” biased with the given % toward the individual.
Roulette Wheel Optimization

![Roulette Wheel](image)

GA Perspective
- Like gradient descent, GA’s can also get stuck in local fitness extrema.
- The space is different; for GA’s, a stuck point corresponds to a population from which crossover does not yield any better individuals.
- Mutation is one hope for leaving such an extremum. Other possibilities are simulated annealing, random restarts.

Evolution Options
- Since we are simulating using a computer, not actually evolving species, there is no reason why **Lamarckian**, rather than **Darwinian**, evolution could not be used.
- Most results to date are Darwinian.
- Lamarckian could integrate other learning models to breed new species from individuals that have learned.

Lamarckian Leads

Genetic Programming
- Genetic programming is the GA idea applied to evolving **programs** (as opposed to just numbers).
- The prime mover of this field is John R. Koza.

Reference
- John R. Koza

 Genetic Programming : On the Programming of Computers by Means of Natural Selection

 MIT Press, 1996
Koza (striped shirt) with 70-node Beowulf cluster

Koza’s 1000 node Beowulf used for genetic programming

Genetic Programming
Genomes = Syntax Trees

For animated tutorial, please see:

Mutation of a Program

Crossover of Two Programs

Genetic Programming Demo:
Symbolic Regression
(http://www.ifh.ee.ethz.ch/~gerber/approx/default.html)
The evolved program

GP Caution

- Typically fitness of genetically-evolved programs is established by working on a large number of test cases.
- We know this is not completely sound.
- A possible fruitful area is to evolve a proof of correctness along with the program itself. I know of no work in this area.

Engineering Applications: Evolving Hardware (Analog & Digital)

- The evolved program is a list of instructions for constructing the circuit, rather than the graph of the circuit itself.
- This approach has also been used to construct neural networks.
- The results for circuit design are competitive with, or superior to, human engineering.
- Numerous patents have been reinvented using GP.

Generating Analog Circuits

Analog filter generated by genetic programming

A Genetically- Evolved Amplifier
Commercial Applications: Marketing Projections

Function Repertoire Menu

Other Opportunities

- Parallelism in Computation (local work of Beda & Margileth, and Tom Johnson, CS 152 steu)
- Parallelism optimizing transformations
- Music
- Robotics

Koza GP Video Clips

http://www.statsoft.com/textbook/stcluan.html#h