Statistical Classification vs. Regression and FF nets

- In regression or feed-forward nets, it is assumed that there is an underlying functional mechanism, although the exact formulation and parameters of the mechanism may be unknown.
- An attempt is made to find the formulation and parameters that minimize an error function, such as MSE.

Statistical Classification vs. Regression and FF nets

- In statistical classification, no assumption is made that there is a single mechanism.
- The outcome of classification is always discrete (each datum is assigned to one of several classes), whereas with regression or FF nets, it may be continuous.
- Consequently, a functional classification is still being assumed, although we know the classification will be wrong some of the time.

Source of Input

- In general, input is a vector.
- For pattern recognition, it may be a vector of features that have been obtained by pre-processing.

Statistical Classification vs. Regression and FF nets

- Regression and FF nets can be part of a statistical classification scheme. But may have to be a final decision layer that determines the class, e.g. a competitive layer.

Statistical Classification vs. Regression and FF nets

- For two classes, we have also used a single regression function plus a threshold.
Statistical Classification Objective

- We know the classification will be wrong some of the time.
- The goal is to minimize wrongness, in some sense, which is referred to as the optimal classification.

Optimal Classification

- The optimal classifier has been shown by statistician R.A. Fisher in 1936 to be one that assigns to each sample x the class c_i with the highest posteriori probability $P(c_i | x)$:

$$\forall j \neq i \ P(c_i | x) > P(c_j | x)$$

Optimal Classification

- It can be shown (see CDROM examples) that the neural network or regression approach does not give an optimal classification in the sense described.

Computing $P(c_j | x)$

- $P(c_j | x)$ is typically computed using Bayes’ rule:

$$P(c_j | x) = P(x | c_j) P(c_j) / P(x)$$

where $P(c_j)$ and $P(x)$ are the prior probabilities of being in class c_j and of the sample being x, respectively and $P(x | c_j)$ is the likelihood of drawing sample x as a random member of class c_j.

- For a given x, $P(x)$ can be dropped when comparing across classes for the optimal classification.

Bayes’ Rule Interpretation

- $P(c)$ is the probability of a sample being in a class without any information about the sample. This can be estimated from the relative frequency of class occurrences.
- $P(c | x)$ is the probability of a sample being in a class with the identity of the sample known. This is what we’d like to know (compute).
- $P(x | c)$ is the probability of the sample within a given class. This can be determined from the probability distribution for the class c.

Probability Distribution within Classes

- The actual distribution of samples within a class might not be known.
- It is common to make assumptions, such as:
 - Gaussian distribution of $P(x | c_j) P(c_j)$
 - Distribution mean = sample mean
 - Distribution variance = sample variance
Example

2 classes: healthy & sick depending on temperature

- Measured samples (temperature, class):

<table>
<thead>
<tr>
<th># cases</th>
<th>Histogram</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>= healthy (c₁)</td>
</tr>
<tr>
<td></td>
<td>= sick (c₂)</td>
</tr>
</tbody>
</table>

- Gaussian Estimates (use density fn as mass)

\[P(t \mid c_i) P(c_i) = \exp\left(-\frac{(t-\mu_i)^2}{2\sigma_i^2}\right)/\sqrt{2\pi\sigma_i}, \ i = 1,2 \]

- Classification

There are two ways to compute the classification for an input:

- Compute the value of the Gaussian pdf for each class and choose the one that is greater, or
- Solve for the crossover point and compare the value to it. Solving can be done by taking \(\ln \) of both functions; monotonicity of \(\ln \) means that the relative order is preserved.

Example

Gaussian Estimates (use density fn as mass)

\[P(t \mid c_i) P(c_i) = \exp\left(-\frac{(t-\mu_i)^2}{2\sigma_i^2}\right)/\sqrt{2\pi\sigma_i}, \ i = 1,2 \]

- Discriminant Functions

The role of the Gaussian Estimates

\[P(t \mid c_i) P(c_i) = \exp\left(-\frac{(t-\mu_i)^2}{2\sigma_i^2}\right)/\sqrt{2\pi\sigma_i} \]

as means for comparison to determine classification can be generalized to a set of functions, one for each class. The class is determined as the function having the largest value for the given argument.

- As a set, such functions are called discriminant functions.
- One way to compute such a set of functions is by neural networks.
The previous example was one-dimensional (temperature).
The extension of discriminant functions to >1 dimension is obvious.
However, it is less obvious to see what is going on graphically:
- There is a joint probability distribution for each class.
- The classes can overlap in multiple dimensions.

Joint Probability Distributions
- Example: product of two Gaussians:
 \[
P((x,y) | c_i) P(c_i) = \exp(-\frac{(x-\mu_{i1})^2}{2\sigma_{i1}^2})/\sqrt{2\pi\sigma_{i1}} * \exp(-\frac{(x-\mu_{i2})^2}{2\sigma_{i2}^2})/\sqrt{2\pi\sigma_{i2}}
 \]
- Example: general multivariate Gaussian:
 \[
P(x | c_i) P(c_i) = \exp(-\frac{(x-\mu_i)^T\Sigma^{-1}(x-\mu_i)}{2})/(\sqrt{2\pi})^{N/2} |\Sigma|^{1/2}
 \]
 where \(x\) and \(\mu_i\) are vectors, \(\Sigma\) is the covariance matrix, and \(N\) is the dimension.

Covariance Matrix
- \(c(i,j) = \frac{\sum_{n=1}^{N} (x(n,i) - m(i)) (x(n,j) - m(j))}{n-1}\)
 where \(m(i)\) and \(m(j)\) are the means of their respective sample variables and \(n\) is the number of samples.
- \(c(i,j) = 0\): variables are uncorrelated
- \(c(i,j) = \text{product of standard deviations}\): variables are perfectly correlated

Mahalanobis Distance
- General multivariate Gaussian:
 \[
P(x) | c_i) P(c_i) = \exp(-\frac{(x-\mu_i)^T\Sigma^{-1}(x-\mu_i)}{2})/(\sqrt{2\pi})^{N/2} |\Sigma|^{1/2}
 \]
 the argument of \(\exp\):
 \[-\frac{(x-\mu_i)^T\Sigma^{-1}(x-\mu_i)}{2}\]
 is called the Mahalanobis distance from \(x\) to the mean \(\mu_i\).

Mahalanobis Distance
- The Mahalanobis distance distance generalizes Euclidean distance.
- If the covariance matrix is diagonal, then the M-distance is the same as the E-distance.
- This gives rise to a minimum Euclidean-distance classifier.
- Comparison by distance contours (distance from center):
 - Euclidean
 - Mahalanobis
 - Hamming
Linear Discriminant Functions

Quadratic Discriminant Functions

Discriminant Functions for Multivariate Gaussian

- Quadratic discriminant functions are well-suited for multivariate Gaussian distributions.
- This is seen by using the ln’s of the distribution functions for discrimination. The ln’s are quadratic in x.
- Effectively the selected class for a data point x is the one for which x has the closest Mahalanobis distance to the class’ mean.

2-D Example

- See text NAS, Figure 2-5
- x = (height, weight)
- classes = (man, woman)

<table>
<thead>
<tr>
<th>Weight</th>
<th>Height</th>
<th>Class</th>
<th>Mean</th>
<th>Covariance</th>
</tr>
</thead>
<tbody>
<tr>
<td>woman</td>
<td>63.7385</td>
<td>1.6084</td>
<td>[77.1877, 0.0139]</td>
<td></td>
</tr>
<tr>
<td>man</td>
<td>82.5278</td>
<td>1.7647</td>
<td>[366.3206, 0.4877]</td>
<td></td>
</tr>
</tbody>
</table>

man classifier = 7.716h² - 233.95h + 0.0039w² - 0.4656w + 129.4 > 0 (based on 1000 measurements)

Kernel-Based Classification

- A 3-layer network:
 - Non-linear functions of inputs (transform inputs), typically symmetric functions
 - Linear combinations of the outputs of the non-linear functions
 - Maximum selection
 - In other words, a neural network
 - The idea is motivated by Cover’s theorem, which states that any classification problem is linearly-separable if transformed to a sufficiently-high dimensional space.

Related Topics

- Gaussian processes
- Support Vector Machines
 - Generalize Radial-Basis Function Networks, plus add a threshold at output.
 - See NAS, sections 5.8, 3.3.3, 3.3.4 (large-margin perceptron and Adatron algorithm)
Support-Vector Machine Demo

http://svm.research.bell-labs.com/SVT/SVMsvt.html

- class 1
- class 2
- ☀️ support vectors
- ✖️ wrong classification

Support vectors are points close to the decision boundary. The separating surfaces are placed about midway between them.