CS140: Algorithms

Z Sweedyk
Lecture 0
1/16/01

Today

• Who Am I?
• Who Are You?
• Course Overview
• Some Basics

Course Overview

1. How to analyze algorithms
2. How to design algorithms
3. NP-completeness

Course Requirements

• Homework
• Exams
• Class participation

Homework

• Assignments will be posted to the web page on Tuesday and Thursday
• Assignments are due at the start of the next class period.
• Solutions will be posted at due time so no late homework will be accepted
• Solutions should be prepared in LaTeX

Exam Due Dates

(Tentative Schedule)

• Exam I: Feb. 13
• Exam II: Mar. 27
• Exam III: Apr 24
• Final: May 12

• Exams will be take-home, timed, closed book
Course Requirements – class participation

• Show up to class
• Speak up in class
• Hand in daily “worksheets”

Advice

• Stay on top of things
• Seek help when necessary

The Problem

Computational Problem: Specified by input/output pair

Sorting

• Sorting Integers in Ascending Order (SIAO):
 Input: A list of integers
 Output: The input integers sorted in ascending order

• Example:
 Input: 5,3,8,1,2
 Output:

What should an algorithm for SIAO do?

• Example 1:
 – Input: 5,3,8,1,2
 – Output:

• Example 2:
 – Input: 3,a,5.27,mudder
 – Output:
Software Development

The problem: Huh?
The idea: A-ha!
The program: Ta-da!

The algorithm exists somewhere between a-ha and ta-da.

An Algorithm for SIAO?

Sort1(S)
While there are integers x and y in S such that x precedes y in S and x > y
Swap x and y in S
Return S

Sort1 Example
Input: 5, 3, 8, 1, 2
Swap 3 and 2: 5, 2, 8, 1, 3
Swap 5 and 3: 3, 2, 8, 1, 5

Is Sort1 an algorithm?
Is Sort1(S) well-defined?
No! We need to specify a selection rule.

Order on pairs of indices

An Algorithm for SIAO?

Sort2(S)
Assume a fixed order on pairs of elements in S
While there are integers x and y in S such that x precedes y in S and x > y
Choose first pair x, y that is out of order
Swap x and y in S
Return S
Sort2 Example

Input: 5, 3, 8, 1, 2
Swap 5 and 3: 3, 5, 8, 1, 2
Swap 3 and 1: 1, 5, 8, 3, 2

Is Sort2 an algorithm?

Is Sort2(S) well-defined? Yes.

Does it produce the correct output for any valid input?

Proof of correctness

- When the algorithm halts S is sorted.
- The algorithm halts on all input.
 - How can we measure the progress the algorithm makes from a swap?

Claim

- The number of “out-of-order” pairs decreases with each swap.
- Progress: Eventually we’ll have 0 “out-of-order” pairs and the algorithm will halt.

Illustration of claim

Input: 5, 3, 8, 1, 2 #out-of-order pair: 7
Swap 5 and 3: 3, 5, 8, 1, 2 6
Swap 3 and 1: 1, 5, 8, 3, 2 5

Proof of claim:

- Suppose the algorithm chooses to swap x and y:
 \(u_0, \ldots, u_i, x, v_0, \ldots, v_j, y, w_0, \ldots, w_k \)
- Change in status of a pair:
 - Out-of-order → Ordered
 - Ordered → Out-of-order
- Pairs to consider
 - \(i-w, i-x, i-v, i-y, i-w \)
 - \(j-x, j-w \)
 - \(v-y, v-w \)
 - \(y-w, w-w \)
Ordered→unordered

• Suppose an x-y pair goes from ordered to out-of-order.
• Then ___________________________

Ordered→unordered

• Suppose an x-y pair goes from ordered to out-of-order.
• Then ___________________________

Ordered→unordered

• Suppose an y-y pair goes from ordered to out-of-order.
• Then ___________________________

Proof

• The x-y pair goes from out-of-order to ordered.
• For every pair that goes from ordered to out-of-ordered ____________________.

Is Sort2 a good algorithm?

• Is it easy to understand?
• Is it easy to implement?
• Is it fast?
• Is it space-efficient?

How fast is Sort2?

• How many swaps can the algorithm make?
• How many comparisons does the algorithm need to make to find a pair to swap?
• How many comparisons does the algorithm make?
• The running time is __________
CS140: Two questions

Is it correct? Is it fast?

```
Computational procedure  yes  Algorithm  yes  Good algorithm
```

Another algorithm for SAIO?

```
Sort3(S)
If ||S||< 1
Return: S
Else
Return: Sort3(S\{max-element(S)}),max-element(S)
```

Proof of correctness

(Prove Def. 1 = Def. 2)

- Def. 1 (non-recursive)
 \(s_0, s_1, \ldots, s_n\) is sorted if for every \(i, j\) such that \(i<j\) it holds that \(s_i < s_j\)
- Def. 2 (recursive)
 The list \(s_0, s_1, \ldots, s_n\) is sorted if
 1. \(n=0\), or
 2. \(n>0\) and \(s_0, s_1, \ldots, s_{n-1}\) is sorted and for all \(i<n\) it holds that \(s_n \geq s_i\)

Example: Sort3(3,1,5,2,4)

```
Sort3(3,1,5,2,4) = Sort3(3,1,2,4),5
               =  Sort3(3,1,2),4,5
               =  Sort3(1,2),3,4,5
               =  Sort3(1),2,3,4,5
               =  1,2,3,4,5
```

Recursive Algorithms

What about Sort3?

```
Sort3(S)
If ||S||< 1
    Return: S
Else
    Return: Sort3(S\{max-element(S)}),max-element(S)
```

Let \(T(n)\) be the running time of Sort3:

\[
T(1) = c_1 \\
T(n) = c_1n + T(n-1), \ n>1
\]

Unwinding

\[
T(n) = c_1n + T(n-1) \\
 = c_1n + c_1(n-1) + T(n-2) \\
 = \cdots
\]
Basic skills

• LaTex – HW0
• Ch 2.2 of CLR