CS140: Algorithms

Z Sweedyk
Lecture 1
1/18/01

Last class
The two important questions we consider in CS140:
– Is the computational procedure correct?
– Is the algorithm fast?

How do we measure speed?

• What to measure
 • Big-O notation/rate of growth
 • Loop counting
 • Series

Running Time
Where to measure?

Measurement is easy
Measurement is meaningful

A useful assumption

T_A and T_M differ by no more than a multiplicative constant

More formally
There is some constant c such that for any input Z

$T_A(Z)/c \leq T_M(Z) \leq cT_A(Z)$
Running Time
Where to measure?

- Algorithm: Measurement is easy and meaningful
- Program
- Machine code: Input
- Machine: Measurement is meaningful

Running Time:
What to measure?

- Run time depends on input size
- Run time can vary on different inputs of size n.

Pick special case

- Run time depends on input size
- Run time can vary on different inputs of size n.
- Choose case:
 - Worst case (show in bold)
 - Best case
 - Average case
 - Etc.

Worst case performance of algorithm ▲

- We can compute this function at a finite number of points.
- Better yet, we can model this function for all input sizes.

A general problem …

- Question: How can we give a succinct description of an arbitrary function?
- Answer: Big-O notation.

Today

- What to measure
- Big-O notation/rate of growth
- Loop counting
- Series
Upper Bounds

- \(f : \mathbb{N} \to \mathbb{N} \) and \(g : \mathbb{N} \to \mathbb{N} \) are positive-valued, monotonically increasing functions.
- \(O(g(n)) = \{ f(n) : \text{there are constants } c \text{ and } M \text{ such that } f(n) \leq c \cdot g(n) \text{ for all } n \geq M \} \)

Proving \(f(n) = O(g(n)) \)

Consider \(h(n) = f(n)/g(n) \) as \(n \) goes to infinity
- \(h(n) \) converges
- \(h(n) \) diverges
- \(h(n) \) oscillates

Some useful observations about Big-O

- If \(f(n)/g(n) \) converges then \(f(n) __ O(g(n)) \).
- If \(f(n)/g(n) \) diverges then \(f(n) __ O(g(n)) \).
- If \(f(n)/g(n) \) oscillates then \(f(n) __ O(g(n)) \).

Logarithms

For which pairs \(f(n) \), \(g(n) \) is \(f(n) = O(g(n)) \)?
- \(\log n \)
- \(\log n^2 \)
- \(\log^2 n \)
- \(\log 10000 n \)

Example

\[
\lim_{n \to \infty} \frac{\log n}{\log n^2} = \frac{(\log 10)/2}{2}\]

(Useful observation: \(\log n^2 = 2(\log 10 \cdot \log n) \))

Limits

1. \(\lim_{n \to \infty} \frac{\log n^2}{\log n} \)
2. \(\lim_{n \to \infty} \frac{\log n}{\log^2 n} \)
3. \(\lim_{n \to \infty} \frac{\log^2 n}{\log n} \)
4. \(\lim_{n \to \infty} \frac{\log n}{\log 10000 n} \)
Polynomials
For which pairs \(f(n) \), \(g(n) \) is \(f(n) = O(g(n)) \)?
- \(n \)
- \(n^2 \)
- \(1000n^2 + n \)

Exponentials
For which pairs \(f(n) \), \(g(n) \) is \(f(n) = O(g(n)) \)?
- \(2^n \)
- \(3^n \)
- \(2(n^2) \)
- \((2^n)^2 \)

Some rules of thumb
- Polylogs are slower growing than polynomials
 For any \(k, j > 0 \):
 - \(\log^j n = O(n^k) \) and \(n^k \neq O(\log^j n) \)
- Polynomials are slower growing than exponentials
 For any \(k > 0 \) and \(r > 1 \):
 - \(n^k = O(r^n) \) and \(r^n \neq O(n^k) \)

L’hospital’s rule
- \(\lim_{n \to \infty} \log^n n / r^k = 0 \)
- \(n^k / \log^n n \) diverges as \(n \) goes to infinity

Polynomially bounded functions
\(f(n) \) is polynomially bounded if there is a constant \(k \) such that \(f(n) = O(n^k) \)

Logs, Polys, and Exps
Which of the following functions are polynomially bounded?
- \(\log n \)
- \(n^3 \)
- \(2^n \)
Other functions

- Factorial: \(n! = n \cdot (n-1)! \), 0! = 1
- Tower of 2s: \(2^{\uparrow\uparrow}n = 2^{2^{\uparrow\uparrow}(n-1)} \), \(2^{\uparrow\uparrow}0 = 1 \)
- Iterated log: \(\log^*(n) = m \) such that \(2^{\uparrow\uparrow}((m-1)) < n \leq 2^{\uparrow\uparrow}m \)
- Ceiling: \(\lceil \log n \rceil = 2^m \) such that \(m-1 < \log n \leq m \)

Logs, polys, exps, and others

Compare the rates of growth of the following functions:
\(\lg n \), \(n^3 \), \(2^n \), \(n! \), \(2^{\uparrow\uparrow}n \), \(\log^*(n) \), \(\lceil \log n \rceil \)

Another useful observation

- If \(\frac{f(n)}{g(n)} \) diverges then so does \(2^{f(n)}/2^{g(n)} \)
- If \(\frac{\lg(f(n))}{\lg(g(n))} \) diverges then so does \(\frac{f(n)}{g(n)} \)

Beyond O

<table>
<thead>
<tr>
<th>Real numbers</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq)</td>
<td>(O)</td>
</tr>
<tr>
<td>(\geq)</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(=)</td>
<td>(\Theta)</td>
</tr>
<tr>
<td>(<)</td>
<td>(o)</td>
</tr>
<tr>
<td>(>)</td>
<td>(\omega)</td>
</tr>
</tbody>
</table>

Lower Bounds

- \(f: \mathbb{N} \rightarrow \mathbb{N} \) and \(g: \mathbb{N} \rightarrow \mathbb{N} \) are positive-valued, monotonically increasing functions.
- \(\Omega(g(n)) = \{ f(n) : \) there are constants \(c \) and \(M \) such that \(f(n) \geq c \cdot g(n) \) for all \(n \geq M \) \}

Definition: \(\Theta \)

\(f(n) = \Theta(g(n)) \) if the following hold:
1. \(f(n) = O(g(n)) \), and
2. \(f(n) = \Omega(g(n)) \)
Definition: little-o, little-ω

- \(f(n) = o(g(n)) \) if \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \)
- \(f(n) = \omega(g(n)) \) if \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \)

Logs, polys, exps, and others

Compare the following functions. Which of \(O, \Omega, \Theta, o, \) and \(\omega \) apply?

\(\lg n, \ n^3, \ 2^n, \ n!, \ 2 \uparrow\uparrow n, \ \log^*(n), \ \lceil n \rceil \)

A slight twist…

Is \(f(2n) = O(f(n)) \)?
1. \(f(n) = 1 \): Is \(2n = O(n) \)?
2. \(f(n) = 3n \): Is \(6n = O(3n) \)?
3. \(f(n) = n^2 \): Is \(4n^2 = O(n^2) \)?
4. \(f(n) = 2^n \): Is \(4^n = O(2^n) \)?
5. \(f(n) = n! \): Is \((2n)! = O(n!) \)?

Today

- What to measure
- Big-O notation/rate of growth
- Loop counting
- Series

CS140 pragmatism

What is the asymptotic behavior of the worst-case running time of the algorithm?

CS140 pragmatism

Big-O

What is the asymptotic behavior of the worst-case running time of the algorithm?
What is the asymptotic behavior of the worst-case running time of the algorithm?

Special case input

What is the asymptotic behavior of the worst-case running time of the algorithm?

Chosen resource

What is the asymptotic behavior of the worst-case running time of the algorithm?

Remember our assumption

The running time of A is $O(n^3)$.

The worst case running time of A is $O(n^3)$.

A is $O(n^3)$.

Run time bounds for algorithm A

Rate of growth of common functions

• Review of properties/notation
• See CLR pp 32–37 for details

KNOW THIS STUFF

Today

• How should we measure the speed of an algorithm?
• Big-O notation/rate of growth
• Loop counting
• Series
Types of Algorithms

- Recursive Algorithm: one that calls itself
- Purely Iterative Algorithm: one that doesn’t

Run Time Analysis

- Iterative algorithm → Loop counting
- Recursive algorithm → Recurrence relations

Iterative Sorting Algorithms

- Insertion-sort
- Bubble-sort
- Modified Bubble-sort

Insertion-sort(S)

(in pseudo-code) S is an array of n integers: S(1), S(2), …, S(n)

For j = 2 to n
 key = S(j)
i = j - 1
While i > 0 and S(i) > key
 S(i+1) = S(i--)
S(i+1) = key

Correctness

- Inductive proof with loop invariant:
 When the for loop executes for the kth time, S(1), S(2), …, S(k) are sorted in ascending order.

Loop Counting: Insertion-sort(S)

\[
\sum_{j=2}^{n} (1 + 1 + \sum_{i=0}^{j-1} (1 + 1 + 1)) = O(n^2)
\]
Bubble-sort(S)

Bubble-sort(S)
For i=n down to 2
 For j=1 to i-1
 If S(j) > S(j+1) then swap(S(j), S(j+1))
 Return

Correctness

- Inductive Proof with loop invariant:
 When the i-loop completes its kth execution,
 - S(n-k+1), S(n-k+2), ..., S(n) is sorted in ascending order, and
 - the max(S(1), ..., S(n-k)) \leq S(n-k+1).

Does Bubble-sort do too much work?

1. 3. 2. 4. 5
1. 2. 3. 4. 5
1. 2. 3. 4. 5
1. 2. 3. 4. 5
1. 2. 3. 4. 5

- Repeat on smaller list

Modified Bubble-sort

Modified-Bubble-sort(S)
SWAP=T
For i=n down to 2
 If SWAP=F then return
 SWAP=F
 For j=1 to i-1
 If S(j) > S(j+1) then swap(S(j), S(j+1)) and set SWAP=T
 Return

Example

1. 3. 2. 4. 5
1. 2. 3. 4. 5
1. 2. 3. 4. 5

- Repeat on smaller list unless no swaps are made

Loop counting: M-Bubble-sort

\[1 + \sum_{i=2}^{n}(4 + \sum_{j=1}^{i-1} 3) = O(n^2)\]
Summation

\[\sum_{i=2}^{n} \sum_{j=1}^{i-1} c = c \left(\sum_{i=2}^{n} (i-1) \right) - c \]
\[= c \left(\sum_{i=2}^{n} i - n \right) - c \]
\[= O(n^2) \]

Series

- A series is a summation of terms
- Common series:
 - Arithmetic series: \(1+2+\ldots+n \)
 - Geometric series: \(1+a+a^2+\ldots+a^n \)

Series

Things we want to do:

- Solve exactly
- Bound above or below
- Prove that a solution (or bound) is correct

Closed form solutions to some common series

- \(f(n) = 1+2+\ldots+n = n(n+1)/2 \)
- \(f(n) = 1^2 + 2^2 + \ldots + n^2 = (2n^3 + 3n^2 + n)/6 \)
- \(f(n) = 1+a+a^2+\ldots+a^n = \frac{a^{n+1}-1}{a-1} \) if \(a=1 \)
 \(= 1/(1-a) \) if \(0 \leq a < 1 \)
- \(f(n) = 1+a+a^2+\ldots = 1/(1-a) \) if \(0 \leq a < 1 \)

Series

Things we want to do:

- Solve exactly
- Bound above or below
- Prove that a solution (or bound) is correct

Upper Bounds on series

For any constant \(k \):

\[\sum_{i=1}^{n} i^k \leq \frac{\sum_{i=1}^{n} n^k}{(n^{k+1})} = O(n^{k+1}) \]

Is this a good upper bound?
Lower Bounds on series

For any constant k:

\[\sum_{i=1}^{n} i^k \geq \sum_{i=\lceil n/2 \rceil}^{n} i^k \geq \frac{n}{2} \left(\frac{n}{2} + 1 \right)^{k+1} \]

\[= \Omega(n^{k+1}) \]

So \(\sum_{i=1}^{n} i^k = \Theta(n^{k+1}) \)

Series

Things we want to do:

• Solve exactly
• Bound above or below
• Prove that a solution (or bound) is correct

Proving correctness

• Claim: \(\sum_{i=1}^{n} i^2 = \frac{2n^3 + 3n^2 + n}{6} \)
• Claim holds for \(n=1 \).
• If the claim holds for \(n \) then it holds for \(n+1 \):

\[\sum_{i=1}^{n+1} i^2 = (n+1)^2 + \sum_{i=1}^{n} i^2 \]

\[= (n+1)^2 + \frac{2n^3 + 3n^2 + n}{6} \]

\[= \frac{2(n+1)^3 + 3(n+1)^2 + (n+1)}{6} \]

Next time

• Recursive algorithms
• Recurrence relations