CS140: Algorithms
Z Sweedyk
Lecture 2
1/23/01

Today
• Recurrence relations
• Work trees
• Divide and conquer

Run Time Analysis
• Iterative algorithm → Loop counting
• Recursive algorithm → Recurrence relations
 1. Write the recurrence relation
 2. Convert the recurrence relation to a series
 3. Solve the series

Sort3: A Recursive Algorithm for SIAO

Sort3(S)
If ||S|| ≤ 1
 Return: S
Else
 Return: Sort3(S\max-element(S)),max-element(S)

1. Write the recurrence relation

Sort3(S)
T(1) = c_1
T(n) = c_1 n + T(n-1) , n > 1

Let T(n) be the running time of Sort3:
T(1) = c_1
T(n) = c_1 n + T(n-1) , n > 1

2. Convert to series
T(1) = c_1
T(n) = c_1 n + T(n-1) , n > 1

\[T(n) = c_1 n + \sum_{i=2}^{n} c_1 i \]
3. Solve

\[c_2 + \sum_{i=2}^{n} c_i = c_2 + c_1 \frac{n(n+1)}{2} = O(n^2) \]

Recurrence Relations

Shortcuts and other tools:
- Guess and prove
- Master method
- Unwinding
- WORK TREES

Steps 2-3: Guess and Prove

- \(T(n) = c_1 n + T(n-1), \ T(1) = c_2 \)
- Guess: \(T(n) = O(n^2) \)
- Prove: We need to show that there exists constants \(c \) and \(M \) such that \(T(n) \leq cn^2 \) for all \(n \geq M \)

Guess and Prove cont.

- \(T(1) \leq c \), provided \(c \geq c_1 \)
- Suppose \(T(n-1) \leq c(n-1)^2 \):
 \[
 T(n) = c_2 n + T(n-1) \\
 \leq c_2 n + c(n-1)^2 \\
 = c_2 n + c(n^2 - 2n + 1) \\
 = cn^2 - (2c - c_2)n + c \\
 \leq cn^2, \text{ provided } c \geq c_2 \text{ and } n \geq 1
 \]

Guess and Prove cont.

- \(T(n) \leq cn^2 \) for all \(n \geq 1 \), where \(c = \max(c_1, c_2) \)
- \(T(n) = O(n^2) \)

Guess and Prove cont.

- What if you guess is wrong?
- You’ll reach a contradiction in the proof step
Recurrence Relations
Shortcuts and other tools:
– Guess and prove
– Master method
– Unwinding
– WORK TREES

Steps 2-3: Master Theorem
• Read the book

Warning – only works for certain types of recurrence relations

Recurrence Relations
Shortcuts and other tools:
– Guess and prove
– Master method
– Unwinding
– WORK TREES

Step 2: Unwinding
\[T(n) \leq c \cdot n + T(n-1) \leq c \cdot n + c \cdot (n-1) + T(n-2) \leq c \cdot n + c \cdot (n-1) + c \cdot (n-2) + T(n-3) \]
\[\ldots \]
\[T(n) \leq c_1 + \sum_{i=2}^{n} c \cdot i \]

Step 2 (and a little 3): Work Tree
• Topology: A rooted tree for algorithm A on input size n:
 – Each node corresponds to a (recursive) call of A
 – An edge from u to v represents the fact that the recursive call v is made from within u.

\[T(n) = cn + T(n-1) \]
Example: Sort3(3,1,5,2,4)

Work Tree
- The “work” done at a node is the number of steps performed by the algorithm within the recursive call.
- \(T(n) = cn + T(n-1) \)

Sort3 Work Tree
- Consider a node at level i, where the root is at level 0:
 - What is the input size? \(n-i \)
 - What is the work done? \(c(n-i) \)
- How many nodes are there at level i? 1
- What is the total work done at level i? \(c(n-i) \)
- How many levels are there in the tree? \(n \)
- What is the total work done? \(\sum_{i=0}^{n-1} c(n-i) \)

Merge-sort

```plaintext
Merge-sort(S={s_1, s_2, ..., s_n})
If n=1 return(S)
Else
    S_1 = Merge-sort(s_1, ..., s_{n/2})
    S_2 = Merge-sort(s_{n/2+1}, ..., s_n)
    Return Merge(S_1, S_2)
```

Merge\((s_1, s_2, \ldots, s_k; t_1, t_2, \ldots, t_j) \)
(k>0 and j>0)

- If \(s_1 \leq t_1 \) then output \(s_1, \) Merge\((s_2, \ldots, s_k; t_1, t_2, \ldots, t_j) \)
- Else output \(t_1, \) Merge\((s_1, s_2, \ldots, s_k; t_2, \ldots, t_j) \)

Merge-sort(4,1,3,2)

```
Input:  4,1,3,2
Merge-sort(4,1)
```

```
Input:  4,1
Merge-sort(4) = 4
```

```
Merge-sort(1) = 1
```

```
Merge(4;1) = 1,4
```

Merge-sort(4,1,3,2)

```
Input:  4,1,3,2
Merge-sort(4,1) = 1,4
```

```
Merge-sort(3,2)
```

```
Input:  3,2
Merge-sort(3) = 3
Merge-sort(2) = 2
Merge(3;2) = 2,3
```
Merge-sort(4,1,3,2)

Input: 4,1,3,2
Merge-sort(4,1)=1,4
Merge-sort(3,2)=3,4
Merge(1,4; 2,3) = 1,2,3,4

Is Merge-sort correct?

• If n=1 then yes
• If n>1 then
 – We can assume Merge-sort(S(1),…,S(\(\lfloor n/2 \rfloor \))) and Merge-sort(S(\(\lfloor n/2 \rfloor +1\), …, S(n)) return correctly sorted lists.
 – So the merge of these lists is a correctly sorted list.

How fast is Merge-sort?
(\text{Assume } n=2^m)

• m=0: \(T(1) = c\)
• m>0: \(T(2^m) = 2T(2^{m-1}) + c2^m\)

Work Tree for Merge-sort

Input Size: 1 (m=0)

\[\text{Work Tree for Merge-sort}
\]

Input Size: 2 (m=1)

\[\text{Work Tree for Merge-sort}
\]

Input Size: 4 (m=2)

\[\text{Work Tree for Merge-sort}
\]
Work Tree for Merge-sort
Input Size: \(n = 2^m \)

A root with two sub-trees
- Root
 - Input Size: \(n \)
 - Work: \(cn \)
- Each child
 - Roots a work tree with Input Size \(2^{m-1} \)

Properties of nodes at level \(i \) (root is at level 0):
- Input size: \(2^{m-i} \)
- Work: \(c2^{m-i} \)

Properties of level \(i \):
- Number of nodes at level \(i \): \(2^i \)
- Total work of nodes at level \(i \): \(c2^m \)

Property of tree:
- Number of levels: \(m+1 \)
- Total work: \(O(n \lg n) \)

What if \(n \neq \lceil \lg n \rceil \)?
- Claim 1: \(T(n) = O(T(\lceil \lg n \rceil)) \)
- Claim 2: \(T(\lceil \lg n \rceil) = \Omega (\lceil \lg n \rceil \lg \lceil \lg n \rceil) \)
- Claim 3: \(\lceil \lg n \rceil \lg \lceil \lg n \rceil = O(n \lg n) \)

Today
- Recurrence relations
- Work trees
- Divide and conquer

Divide and Conquer
“Divide and conquer” is an algorithmic technique:
- Break the problems into sub-problems of size \(n/b \)
- Solve the sub-problems
- Combine the solutions to the sub-problems to create a solution for the original problem
Divide and Conquer

- “Divide and conquer” recurrence relations
 \(T(n) = a \cdot T(n/b) + f(n) \)
 \(T(1) = c = f(1) \)

Analysis

- Consider the case when \(n = b^m \)
- Then generalize to arbitrary \(n \)

Work Tree for Divide and Conquer: \(n = b^m \)

- A root with \(a \) sub-trees
 - Root
 - Input Size: \(n = b^m \)
 - Work: \(f(n) \)
 - Each child
 - Roots a work tree with Input Size \(b^{m-1} \)

Total work: \(c \)

Total work: \(f(b) + ac \)
Work Tree for Divide and Conquer

Properties of nodes at level i (root is at level 0):
- Input size: \(n/b^i \)
- Work: \(f(n/b^i) \)

Properties of level i:
- Number of nodes at level i: \(a \)
- Total work of nodes at level i: \(af(n/b^i) \)

Property of tree:
- Number of levels: \(m+1 \)
- Total work:
 \[
 \sum_{i=0}^{m} a^i f(n/b^i) = \frac{a^{m+1} f(1)}{a-1} = \frac{nf(1)}{b^m (a-1)}
 \]

Work Tree for divide and conquer algorithm:

\[
T(n) = cn \sum_{i=0}^{m} \left(\frac{a}{b}\right)^i
\]

Where is “most” of the work?
- \(f(n) \) is slow-growing \(\leftrightarrow \) \(f(n) \) is fast-growing

\[
f(n) = cn, \ m = \log_b n
\]
Total Work

\[T(n) = cn \sum_{i=0}^{m} (a/b)^i \]

- \(a < b \):
- \(a = b \):
- \(a > b \):

Total Work

\[T(n) = cn \sum_{i=0}^{m} (a/b)^i \]

- \(a < b \): \(O(n) \)
- \(a = b \): \(O(n \log(n)) \)
- \(a > b \): \(O(n^{\log_b a}) \)

Total Work

\[f(n) = cn^k \]

\[f(n) = cn^k \]

\[a(n/b) = cn^k(a/b^k) \]

\[a^2f(n/b^2) = cn^k(a/b^k)^2 \]

\[a^m f(n/b^m) = cn^k(a/b^k)^m \]

Total Work

\[T(n) = cn^k \sum_{i=0}^{m} (a/b)^i \]

- \(a < b \):
- \(a = b \):
- \(a > b \):

Total Work

\[T(n) = cn^k \sum_{i=0}^{m} (a/b)^i \]

- \(a < b \): \(\Theta(n^k) \)
- \(a = b \): \(\Theta(n^k \log(n)) \)
- \(a > b \): \(\Theta(n^{k \log_b a}) \)