Today

• Lower bounds
 – Counting arguments
 – Ad hoc arguments
 – Adversary arguments

Run Time Bounds

Worst Case running times of classic sorting algorithms:
- Bubble-sort: $\Theta(n^2)$
- Insertion-sort: $\Theta(n^2)$
- Merge-sort $\Theta(n \log(n))$
- Heap-sort $\Theta(n \log(n))$
- Quick-sort $\Theta(n^2)$

Comparison-based sorting

A comparison-based sorting algorithm is one that doesn’t need to read the input, provided it is given the size of the input and a comparison oracle.

Lower Bound for Sorting

Theorem: Any comparison-based sorting algorithms has a worst-case running time that is $\Omega(n \log(n))$.

Proof of Theorem

A decision tree describes the queries of a comparison-based algorithm on input size n. A root to leaf path represents the sequence of queries for a particular input.
Proof of Theorem cont.
Each leaf corresponds to the permutation that sorts the input.

Proof cont.
- There must be at least \(n! \) leaves.
- A binary tree with \(n! \) leaves has a path with length at least \(\log(n!) \).
- By Stirling’s approximation \(\log(n!) = \Omega(n \log(n)) \).

Today
- Lower bounds
 - Counting arguments
 - Ad hoc arguments
 - Adversary arguments

FIND-MIN
- How many comparisons does it take to find the minimum in a set of integers?
 - Answer: \(n-1 \)

FIND-MIN
In worst case
- How many comparisons does it take to find the minimum in a set of integers?
 - Answer: \(n-1 \)

Upper Bound for FIND-MIN
Upper Bound Theorem: Finding the minimum in a set of \(n \) integers requires no more than \(n - 1 \) comparisons.

 Proof: Give algorithm
Lower Bound for FIND-MIN

Lower Bound Theorem: Finding the minimum in a set of integers requires at least \(n-1 \) comparisons.

Proof of Lower Bound:

- Consider an algorithm \(A \) on input of size \(n \).
- Let \(G \) be a graph with a vertex for each input integer. Initially \(G \) has no edges. When \(A \) compares two input values, we’ll add an edge between the corresponding vertices of \(G \).
- \(A \) cannot conclude until \(G \) has ______ edges.
- Thus \(A \) cannot conclude until it has made ______ comparisons.

Today

- Lower bounds
 - Counting arguments
 - Ad hoc arguments
 - Adversary arguments

Upper Bound for FIND-MIN/MAX

- Upper Bound Theorem: Finding the minimum and maximum in a set of \(n \) integers requires no more than \(\lceil \frac{3n}{2} \rceil - 2 \) comparisons.

Proof: Give an algorithm

Proof of Upper Bound:

- Algorithm for even \(n \):
 - Make \(n/2 \) pair-wise comparisons
 - Find the maximum of the winners with \(n/2 - 1 \) comparisons
 - Find the minimum of the losers with \(n/2 - 1 \) comparisons
- Algorithm for odd \(n \):
 - Run even algorithm on first \(n-1 \) integers
 - Compare the min and max to the last integer

Lower Bound for FIND-MIN/MAX

- Lower Bound Theorem: Finding the minimum and maximum in a set of \(n \) integers requires at least \(\lceil \frac{3n}{2} \rceil - 2 \) comparisons.

Proof: Adversary argument
Example of an adversary

You pick a number \(y \) between 1 and 100
I have to guess \(y \) by posing queries of the form
"Is it \(x \)?"
You answer "yes, \(x = y \)" or "no, \(y < x \)" or "no, \(y > x \)"

- How many queries can you force me to make?
- Prove it!

FIND-MIN/MAX Adversary - Accounting

- Adversary = interactive comparison oracle
- Accounting scheme: For \(x \) in \(S \)
 \[
 b_{\text{MAX}}(x) = \begin{cases}
 1 & \text{if the algorithm can rule out } x \text{ as the largest integer} \\
 0 & \text{otherwise}
 \end{cases}
 \]
 \[
 b_{\text{MIN}}(x) = \begin{cases}
 1 & \text{if the algorithm can rule out } x \text{ as the smallest integer} \\
 0 & \text{otherwise}
 \end{cases}
 \]

FIND-MIN/MAX Adversary - Strategy

- On query "Is \(x < y \)?"
- Answer consistently with previous answers
- If yes and no both consistent then answer so as to minimize the changes in \(b_{\text{MAX}} \) and \(b_{\text{MIN}} \) variables

Proof of Lower Bound:

- Claim: At most \(\lfloor n/2 \rfloor \) queries can result in the change of two \(b_{\text{MIN/MAX}} \) variables
- Claim: \(2n-2 \) changes must occur before the algorithm concludes

\[\Rightarrow n/2 + (2n-2) - 2 \lfloor n/2 \rfloor \] queries are necessary
Find-gap

- Input: S: x₁,x₂,…,xₙ is a list of distinct integers sorted in ascending order.
- Question: Is there an index i such that xᵢ₊₁ < xᵢ₊₂
- How many elements of S have to be read (in worst case) in order to answer?

Exercise

- What is a good adversary strategy?
- What is a good algorithm strategy?

Double 0’s

- Input: B: b₁,…,bₙ n-bit vector of 0/1’s
- Question: Are there two adjacent 0’s?
- How many bits of B have to be read (in worst case) in order to answer?

Exercise

- What is a good adversary strategy?
- What is a good algorithm strategy?

Upper Bound

Claim: Double 0’s can be solved with f(n) queries where:

\[
f(n) = \begin{cases}
 n-1 & \text{if } n \equiv 1 \mod 3 \\
 n & \text{otherwise}
\end{cases}
\]

Lower Bound

Double 0’s cannot be solved with fewer than g(n) queries where:

\[
g(n) = \begin{cases}
 n-1 & \text{if } n \equiv 1 \mod 3 \\
 n & \text{otherwise}
\end{cases}
\]