Today

• Inductive Design of Algorithms

Inductive Design

• Objective: Define the solution for input of size $n+1$ in terms of solutions for inputs of size $\leq n$

Inductive Sort

<table>
<thead>
<tr>
<th>Transform Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Remove element x</td>
</tr>
<tr>
<td>• Remove max</td>
</tr>
<tr>
<td>• Remove min</td>
</tr>
<tr>
<td>• Partition input into 2 sets</td>
</tr>
<tr>
<td>• Partition input into 2 sets about pivot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transform output</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ____________</td>
</tr>
<tr>
<td>• ____________</td>
</tr>
<tr>
<td>• ____________</td>
</tr>
<tr>
<td>• ____________</td>
</tr>
</tbody>
</table>
Induced Subgraphs

- Let \(G = (V, E) \) be a graph and let \(W \) be a subset of \(V \).
- The subgraph of \(G \) induced by \(W \) is the graph with
 - Vertex set: \(W \)
 - Edge set: \(\{ (x, y) \in E \mid x, y \in W \} \)

Maximal Induced Subgraph

- Input: A graph \(G = (V, E) \) and an integer \(k \).
- Output: A largest subgraph \(G' = (V', E') \) of \(G \) such that every vertex of \(G' \) has degree at least \(k \).

MIS\(_{n+1}\) Algorithm

Finds MIS on graphs with \(n+1 \) or fewer nodes.
MIS(G, k)

• If every vertex has degree at least k
 – Return G

• Else
 – Let x be a vertex with degree less than k
 – Let G' be the subgraph of G induced by V-{x}
 – Return MIS_n(G', k)

Correctness

Let H be a maximal induced subgraph of G with degree at least k.

– Case 1: Every vertex of G has degree at least k:
– Case 2: A vertex x of G has degree less than k:

Running Time

(Assume G has n vertices and m edges)

• Adjacency Matrix: \(T(n) \leq T(n-1) + cn^2 \)

• Adjacency List: \(T(n,m) \leq T(n-1,m-1) + m \)

• Other:

Polynomial Evaluation

• Input: Integers \(a_n, a_{n-1}, \ldots, a_0 \) and an integer x.
• Output: \(P_n(x) = \sum_{i=0}^{n} a_i x^i \)

Polynomial Evaluation Example

• Input: 3, -1, 0, 2 and 2
• Output: 22
• Explanation: \(P(x) = 3x^3 - x^2 + 2; \ P(2) = 22 \)

Naïve Approach

• Number of multiplications:
• Number of additions:
Pe$_{n+1}$ Algorithm
Evaluation of polynomials of degree at most $n+1$

PE(a$_n$,...,a$_0$,x)
- If $n=0$ then return a_0
- Else return $a_0 + x \cdot \text{PE}(a_n, ..., a_1, x)$

Inductive Approach
- Number of multiplications:
 $M(n) = 1 + M(n-1), M(0) = 0$
 Closed form: $M(n) = n$
- Number of additions:
 $A(n) = 1 + A(n-1), A(0) = 0$
 Closed form: $A(n) = n$

Vertex Cover
- Let $G=(V,E)$ be a graph
- A vertex cover of G is a subset $W \subseteq V$ such that for every edge $e=(x,y)$ of G either x is in W or y is in W

Vertex Cover Example
Some vertex covers:
- $\{v_1, v_2, v_3, v_4\}$
- $\{v_2, v_3\}$

Vertex Covers in Forests
- Input: Forest $F=(V,E)$
- Output: A smallest vertex cover of F
A few observations and definitions

- A collection of trees is a forest
- A tree on \(n \) nodes has \(n - 1 \) edges
- A tree never has a cycle
- A tree is always connected
- A tree need not be rooted
- A node with 0 or 1 edges in a tree is a leaf
- A (non-empty) tree always has a leaf

Simple Case

- If \(F \) has no edges then return _________

Claim

- If \(u \) is a leaf of \(F \) and \(v \) is adjacent to \(u \) then some smallest vertex cover of \(F \) includes \(v \).
- Proof:
 - Let \(W \) be a smallest vertex cover of \(F \).
 - If \(v \) is not in \(W \) then \(u \) must be.
 - But then \(W \{-u\} + \{v\} \) is also a smallest vertex cover of \(F \).

Vertex Cover in Forests

If \(F \) has no edges return \(\emptyset \)
Else {
 Let \(u \) be a leaf with an edge in \(F \)
 Let \(v \) be the node adjacent to \(u \) in \(F \)
 Let \(F' \) be the subgraph of \(F \) induced by \(V \{-u,v\} \)
 Return \(\{v\} \cup VCT(F') \)
}