Algorithm Design Techniques

- Induction
- Reduction

Self-Reduction

Algorithm for size n or smaller

\[
\begin{array}{c}
\text{Algorithm for size } n-1 \text{ or smaller.} \\
\end{array}
\]

Input \hspace{1cm} transform \hspace{1cm} Output

Reduction: A \propto B

Algorithm for Problem A

\[
\begin{array}{c}
\text{Algorithm for Problem B} \\
\end{array}
\]

Input \hspace{1cm} transform \hspace{1cm} Output

Some reductions we’ve seen

- Sorting \propto Find-max
- General Selection \propto Find-median
Inductive Design to solve \(A \)

- **One Stage**
 - Self-Reduction

- **Two Stage**
 - Define \(B \)
 - Reduce \(A \) to \(B \)
 - Solve \(B \) using self-reduction

Strengthening the inductive hypothesis

Dominating Set

- A dominating set of a graph \(G \) is a subset \(W \) of the vertices of \(G \) such that every vertex in \(G \) is either in \(W \) or adjacent to a vertex in \(W \).

- **Examples**

Dominating Set

- **Input:** A graph \(G \)
- **Output:** The smallest dominating set of \(G \)

Dominating Set in Trees with \(n \) or fewer nodes

- **Transform**
 - \(T \) to \(T' \)
 - \(T' \) to \(E^*\text{-tree}_n \)
 - \(E^*\text{-tree}_n \) to \(W' \)
 - \(W' \) to \(W \)

 Doesn’t seem to work

Dominating Set in Trees with \(n \) or fewer nodes: Define new problem that is self-reducible

- **Transform**
 - \(T \) to \(?_n \)
 - \(?_n \) to \(E^*\text{-tree}_n \)
 - \(E^*\text{-tree}_n \) to \(?_a \)
 - \(?_a \) to \(W \)
What do you want to know about the subtrees of node v?

Caveat: You have to reproduce that info for the subtree rooted at v.

What do you want to know about a child w?

1. Smallest dominating set that includes w.
2. Smallest dominating set that does not include w.
3. Smallest dominating set on the subtrees rooted at the children of w. (Note: w need not be covered.)

Definitions

1. $I(w)$: Smallest dominating set of the subtree rooted at w that includes w.
2. $E(w)$: Smallest dominating set of the subtree rooted at w that does not include w.
3. $C(w)$: Smallest dominating set on the subtrees rooted at the children of w. (Note: w need not be covered.)

Caveat

Compute $I(v)$, $E(v)$ and $C(v)$ if we have $I(w)$, $E(w)$ and $C(w)$ for each child w of v?

$I(v)$ =
$E(v)$ =
$C(v)$ =

Base Case

v is a leaf:
$I(v)$ =
$E(v)$ =
$C(v)$ =
Dominating Set in Trees with n or fewer nodes

T

Transform

DS_{tree}

Tr

Compute LRC

Ir(r)

E(r)

C(r)

W

Transform

Example

DS-tree algorithm

- Is it correct?
- Is it efficient?

Longest Increasing Subsequence

- Input: Sequence of integers $X: x_1, x_2, \ldots, x_n$
- Output: Longest increasing subsequence of $X: i.e. a subsequence $Z: z_1, z_2, \ldots, z_k$ such that $z_i < z_{i+1}$ for each $i:1 \ldots k-1$.

Example

- $1, -3, 2, 10, 8, 23, -2, 17, 5$

$LIS_{n+1} \propto LIS_n$

Don't know how to do it!!!
To solve A

• **Define B** (Strengthen the inductive hypothesis)
• Reduce A to B
• Solve B using self-reduction

LIS and Modified LIS

• Input: Sequence of integers $X: x_1, x_2, \ldots, x_n$
• Output: Longest increasing subsequence

• Input: Sequence of integers $X: x_1, x_2, \ldots, x_n$
• Output: For each $i:1 \ldots n$, a longest increasing subsequence of x_1, \ldots, x_i that ends in x_i.

MLIS(x_1, \ldots, x_n)

$\text{MLIS}(x_1, \ldots, x_n) =$

1. LIS of x_i that ends in x_i
2. LIS of x_1, x_2 that ends in x_2

 :

n-1. LIS of x_1, \ldots, x_{n-1} that ends in x_{n-1}
 n. LIS of x_1, \ldots, x_n that ends in x_n

Example

• $1, -3, 2, 10, 8, 23, -2, 17, 5$

LIS \propto MLIS

Algorithm for MLIS

$X \xrightarrow{?} \text{Algorithm for MLIS} \xrightarrow{\text{MLIS}(?)} \xrightarrow{\text{Transform}} \text{LIS}(X)$

To solve A

• Define B
• Reduce A to B
• Solve B using self-reduction
LIS \propto MLIS

Algorithm for LIS

X
MLIS(X)
Choose longest subsequence

LIS(X)

Algorithm for MLIS

To solve A
- Define B
- Reduce A to B
- Solve B using self-reduction

MLIS Self-Reduction

Algorithm for size n or smaller

X, x_1, ..., x_n
MLIS(?) =

Algorithm for size n-1 or smaller.

MLIS(x_1, ..., x_n)

MLIS(x_1, ..., x_n) =
1. LIS of x_1 that ends in x_1
2. LIS of x_1, x_2 that ends in x_2
3. ...
n-1. LIS of x_1, ..., x_{n-1} that ends in x_{n-1}
n. LIS of x_1, ..., x_n that ends in x_n

MLIS(x_1, ..., x_n)

MLIS(x_1, ..., x_n) =
1. LIS of x_1 that ends in x_1
2. LIS of x_1, x_2 that ends in x_2
3. ...
n-1. LIS of x_1, ..., x_{n-1} that ends in x_{n-1}
n. LIS of x_1, ..., x_n that ends in x_n

How can we produce this?
Construct MLIS(x_1, \ldots, x_n)

$$MLIS(x_1, \ldots, x_n) =$$
1) $MLIS(x_1, \ldots, x_{n-1})$ plus
2) Choose longest LIS(x_1, \ldots, x_i) ending in x_j ($j < n$)
 such that $x_j < x_n$. Append x_n.

LIS algorithm

- Is it correct?
- Is it efficient?

Recap: To solve A

- Define B
- Reduce A to B
- Solve B using self-reduction

Grocery Bags

How should we pack n items weighing w_1, w_2, \ldots, w_n ($w_i \leq W$) in two bags so as to minimize the difference in the weights of the bags?

Or even simpler: What is the smallest possible weight difference?

Self-Reduction

I don't know how to make this work!

Self-Reduction

Strengthen the induction hypothesis
Problem B

- Input: Weights w_1, w_2, \ldots, w_n
- Output: A binary vector T:

 $T[i] = 1$ if some subset of the weights sum to i

 $T[i] = 0$ otherwise

 for $i = 0, \ldots, nW$

Transform

$$t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \cdots \rightarrow t_{(n-1)W} \rightarrow t_{nW}$$

Set $t_i = 1$ if ___________________ or ___________________

Else $t_i = 0$

Self-Reduction: Problem B

What are the base cases?

Reduction: $A \propto B$

Grocery Bag algorithm

- Is it correct?
- Is it efficient?
Algorithm A

Use Algorithm B to compute $t[0]...t[nW]$
Let $S=\sum w_i$
(Note: $t[0..S]$ is symmetric about S/2)
Let j be the closest index to S/2 such that $t[j]=1$
Return $|j-S/2|$

Grocery Bags

How should we pack n items weighing $w_1, w_2, ..., w_n$ ($w_i \leq W$) in two bags so as to minimize the difference in the weights of the bags?

Or even simpler: What is the smallest possible weight difference?

What about this problem?