Algorithm Design Techniques

• Induction (Self-Reduction)
 – Divide and Conquer
 – Dynamic Programming

Outline

• Longest Common Subsequence
 – Inductive Approach
 – Dynamic Programming
 – Backtracking
• Matrix Chain Multiplication

Longest Common Subsequence

• Input: Two sequences (lists) of integers
 \(X = x_1, x_2, \ldots, x_j \) and \(Y = y_1, y_2, \ldots, y_m \)
• Output: A longest subsequence of \(X \) that is also a subsequence of \(Y \)

LCS - Example

• Input: \(X = 1, -2, 3, 4, 9, 18 \)
 \(Y = 3, 9, 1, -2, 5, -2, 22, 18 \)
• Output: \(Z = 1, -2, 18 \)
Easy cases:
X or Y is empty

- LCS(Φ, Y[1…m]) =
- LCS(X[1…j], Φ) =

Harder case
(Assume j>0, m>0)

\[X = x_1, x_2, \ldots, x_{j-1}, x_j \]
\[Y = y_1, y_2, \ldots, y_{m-1}, y_m \]

1. \(x_j = y_m \)
2. \(x_j \neq y_m \)

Run Time
\[T(j,m) = \max(T(j-1,m) + T(j,m-1)), T(m-1,n-1)) + c \geq 2T(j-1,m-1) + c = \Omega(2^{\min(j,m)}) \]

Run Time Analysis
Many duplicated subtrees

Dynamic Programming
Don’t Recalculate

A(i,k) is the length of a longest common subsequence of X[1…i] and Y[1…k]

- \(A(i,0) = A(0,k) = 0 \) for 0 ≤ i ≤ j and 0 ≤ k ≤ m
- \(A(i,k) = \) maximum of \(A(i-1,k), A(i,k-1), \) and \(A(j-1,k-1) + \text{match}(x_i, y_k) \)
- \(A(j,m) \) is the length of a longest common subsequence of X and Y
LCS - Algorithm

LCS(X=x_1,x_2,\ldots,x_j;Y=y_1,y_2,\ldots,y_m)
For i=0 to j: A(i,0)=0
For i=0 to m: A(0,i)=0
For i=1 to j
 For k=1 to m
 If x_i=y_k then match=1 else match=0
 A(i,k) =max(A(i-1,k),A(i,k-1),A(i-1,k-1)+match))
Return A(j,m)

Run Time Analysis

- Number of table entries:
- Time to compute one entry:
- Run time:

Outline

- Longest Common Subsequence
 - Inductive Approach
 - Dynamic Programming
 - Backtracking
- Matrix Chain Multiplication
Matrix Chain Multiplication

• A is an \(n \times m\) matrix
• B is an \(m \times k\) matrix
• How many scalar multiplications are needed to compute \(AB\)?

Matrix Chain Multiplication

• A is a \(2 \times 5\) matrix
• B is a \(5 \times 1000\) matrix.
• C is a \(1000 \times 2\) matrix.
• How many scalar multiplications are needed to compute \(ABC\)?
 – \((AB)C\)
 – \(A(BC)\)

Matrix Chain Multiplication

• Input: A list of \(n+1\) integers \(p_1, p_2, \ldots, p_{n+1}\)
• Output: The minimum number of scalar multiplications needed to compute \(\Pi_{i=1}^{n} A_i\) where \(A_i\) is a \(p_i \times p_{i+1}\) matrix.

\(\text{MCM}_{n+1}\) Algorithm

Inductive Approach

• Consider an input: \(p_1, p_2, p_3, p_4, p_5, p_6\)
• Imagine an optimal solution: 10773

Inductive Approach

• Consider an input: \(p_1, p_2, p_3, p_4, p_5, p_6\)
• Imagine an optimal way of multiplying matrices \(A_1, A_2, A_3, A_4, A_5\):

 \((A_1(A_2A_3)) (A_2A_3)\)
Inductive Approach

- There is some last multiplication
 \((A_1(A_2A_3)) \mid (A_4A_5)\)

Inductive Approach cont.

- There is some last multiplication
 \((A_1(A_2A_3)) \mid (A_4A_5)\)
- So \(\text{OPT}(A_1, A_2, A_3, A_4, A_5) = \text{OPT}(A_1, A_2, A_3) + \text{OPT}(A_4, A_5) + p_1p_4p_5\)

Inductive Approach

- We don’t know where the top split occurs … but clearly \(\text{OPT}(A_1, A_2, A_3, A_4, A_5) =\)
 \(\min_{0<k<5} \text{OPT}(A_1, \ldots, A_k) + \text{OPT}(A_{k+1}, \ldots, A_5) + p_k p_{k+1} p_5\)
 \(\text{where } \text{OPT}(A) = 0\)

Running Time

- \(T(n) = \sum_{0<k<n} T(k) + T(n-k) + c\)
 \(\geq 2T(n-1) + c\)
 \(= \Omega(2^n)\)

Dynamic Programming

- Use a table to store results
- What kind of results?
 - \(M(k, j) = \text{Minimum number of multiplications to compute } \prod_{k \leq i \leq j} A_i\)

M(k, j) for \(k \leq j\)

- \(M(3, 5)\) needs: \(M(3, 3), M(4, 5), M(3, 4), M(5, 5)\)
M(k,j) needs M(i,m) where m-i < j-k

Dynamic Programming Algorithm

M(k,k)=0
For j,k such that j-k = 1, 2, ..., n-1
M(k,j)= min_{i=k,...,j-1} M(k,i)+M(i+1,j) + p_k \cdot p_{i+1} \cdot p_j
Return M(1,n)

Input: 2,3,1,5,4,8
(A_1 is 2x3, A_2 is 3x1, …)

MCM Algorithm
- Recursive Algorithm takes exponential time.
- Dynamic Programming takes ________.

Input: 2,3,1,5,4,8
(A_1 is 2x3, A_2 is 3x1, …)