Graph Algorithms

- **Strongly connected components**
- Topological sort
- Single-source shortest path

Digraph notions

- Vertex y is *reachable* from x if there is a directed path in G from x to y. (By convention x is reachable from x by a directed path of length 0.)
- Vertices x and y are *strongly connected* if x is reachable from y and y is reachable from x.

Strongly-connected vertices?

- Vertices form *strongly connected components*. (Equivalence classes)
DFS Application

- Identify the strongly connected components of a digraph G.

Depth-First(x)

Depth-First(x)
Mark x visited
For each edge <x, y>
If y is unvisited then
DFS(y)

DFS(G)

DFS(G)
While G has an unvisited vertex x:
Depth-First(x)

Selection rule

- We'll use alphabetical priority

DFS(G)

DFS(G)
While G has an unvisited vertex x:
Depth-First(x)

Depth-First(x)

Depth-First(x)
Mark x visited
For each edge <x, y>
If y is unvisited then
DFS(y)

Choose alphabetically

Choose alphabetically
DFS(G)
Alphabetical priority

a is unvisited so DFS(a)

Call Stack:
DFS(G)

DFS(a)
Alphabetical priority

Visit a
Find edge <a,d> and call DFS(d)

Call Stack:
DFS(a)
DFS(G)

DFS(d)
Alphabetical priority

Visit d
All out-edges checked so return

Call Stack:
DFS(d)
DFS(a)
DFS(G)

DFS(a)
Alphabetical priority

Visit a
Find edge <a,d> and call DFS(d)
All out-edges checked so return

Call Stack:
DFS(a)
DFS(G)

DFS(G)
Alphabetical priority

a is unvisited so DFS(a)
b is unvisited so DFS(b)

Call Stack:
DFS(G)

DFS(b)
Alphabetical priority

Visit b
Find edge <b,c> and call DFS(c)

Call Stack:
DFS(b)
DFS(G)
DFS(c)
Alphabetical priority

Visit c
Find edge <c,a> – no action
Find edge <c,b> – no action
All out-edges checked so return

Call Stack:
DFS(c)
DFS(b)
DFS(G)

DFS(b)
Alphabetical priority

Visit b
Find edge <b,c> and call DFS(c)
Find edge <b,d> – no action
All out-edges checked so return

Call Stack:
DFS(b)
DFS(G)

DFS(G)
Alphabetical priority

a is unvisited so DFS(a)
b is unvisited so DFS(b)
All nodes checked so return

Call Stack:
DFS(G)

What is the running time of DFS?

• O(m+n)
 • Every vertex is pushed onto the stack once and popped from the stack once.
 • Each out-edge is inspected once.

Strongly Connected Components

• Input: Digraph G
• Output: The strongly connected components of G.

Naïve Algorithm

• Are x and y in the same connected component?
 • Mark all vertices unvisited and call DFS(x)
 • If y unvisited return no
 • Mark all vertices unvisited and call DFS(y)
 • If x unvisited return no
 • Return yes
Naïve algorithm
• Worst case: n^2 calls to DFS(x)

All little more sophistication please…
• We can find the strongly connected components of G with two calls to DFS(G)

Three ideas
• DFS Forest
• Timestamps
• Reversal of G

DFS Forest
• The DFS Forest of G is the subgraph consisting of
 – Every vertex of G
 – Each edge traversed in DFS(G)

Different selection rules give different results

WARNING
• DFS Forests are sometimes
What is the connection?

- What can we say about strongly connected components of G vs. trees in a DFS forest of G?

What can we say?

- If x and y are in the same strongly connected component of G then
- If x and y are in different strongly connected components of G then

What can we say?

- If x and y are in the same tree in a DFS forest of G then
- If x and y are in different different trees in a DFS forest of G then

DFS Forest

- Strongly-connected in G is a refinements of the relation “in the same tree of a DFS forest of G.”

Three ideas

- DFS Forest of G
- Timestamps
- Reversal
DFS(G)
Alphabetical order
Record first-arrival and last-departure times.

<table>
<thead>
<tr>
<th>First-arrival</th>
<th>Last-Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

DFS(G)
Alphabetical order

<table>
<thead>
<tr>
<th>First-arrival</th>
<th>Last-Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 1</td>
<td>d 3</td>
</tr>
<tr>
<td>b 5</td>
<td>c 8</td>
</tr>
<tr>
<td>c 6</td>
<td>d 7</td>
</tr>
<tr>
<td>d 2</td>
<td></td>
</tr>
</tbody>
</table>

Three ideas
- DFS Forest
- Timestamps
- Reversal of G

G^R: Reverse the edges of G

Reachability

X is reachable from Y in G ⇔ Y is reachable from X in G^T
Reachability

\[X \text{ is reachable from } Y \text{ in } G \iff Y \text{ is reachable from } X \text{ in } G^\top \]

So the Strongly Connected Components of \(G \) and \(G^\top \) are the same!

SCC

- DFS(\(G \)) with timestamp (alphabetical or other order)
- DFS(\(G^\top \)) using last-departure time decreasing order
- The trees in the DFS forest of \(G^\top \) correspond to the connected components of \(G \)

DFS(G)

<table>
<thead>
<tr>
<th></th>
<th>First-arrival</th>
<th>Last-Departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>c</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

DFS(G^\top)

Order: b,c,a,d

DFS Forest

Order: b,c,a,d
Why does this work?

1. If \(x \) and \(y \) are in the same strongly connected component of \(G \) then they are in the same tree of the DFS forest of \(G^R \).

2. If \(x \) and \(y \) are in the same tree of the DFS forest of \(G^R \) then they are in the same strongly connected component of \(G \).

Claim 1 (Easy)

1. If \(x \) and \(y \) are in the same strongly connected component of \(G \) then they are in the same tree of the DFS forest of \(G^R \).
 - If \(x \) and \(y \) are in the same SCC of \(G \) then \(x \) and \(y \) are in the same SCC of \(G^R \).
 - If \(x \) and \(y \) are in the same SCC of \(G^R \) then they are in the same tree of the DFS forest of \(G^R \).

Claim 2

2. If \(x \) and \(y \) are in the same tree of the DFS forest of \(G^R \) then they are in the same strongly connected component of \(G \).

Proof of Claim 2

- We know that \(\text{Last-departure}(x) < \text{Last-departure}(r) \).
- If \(\text{Last-departure}(x) < \text{First-arrival}(r) \) then \(r \) is not reachable from \(x \) in \(G \) \(\Rightarrow \)
- So \(\text{First-arrival}(r) < \text{First-arrival}(x) < \text{Last-departure}(x) < \text{Last-departure}(r) \) and therefore \(x \) is reachable from \(r \) in \(G \).