NP-completeness
Problem A is NP-Complete if
• A is in NP
• A is NP-hard

Last Time – Harder Reductions
• Next homework:
 – Partition into triangle (with hints)
 – Minimum test collection (with hints)

Today – Killer Reductions
• Grundy numbering
• Partition into paths of length 2

Grundy numbering
• Input: Directed graph G=(V,E)
• Question: Can the vertices of G be labeled with integers such that, for every vertex v, the label of v, L(v) is the smallest non-negative integer that is NOT in the set {L(u): <v,u> is in E}

3SAT \preceq_p Grundy
Partition into Paths of Length 2

- **Input:** Graph $G=(V,E)$ where $|V|=3q$ for some integer q
- **Question:** Can V be partitioned into q disjoint sets V_1, \ldots, V_q where each set contains three vertices, so that the vertices x,y,z of V_i comprise a path of length 2 in G.

3DM \propto_p Partition into Paths of Length 2

Algorithm for 3DM

<table>
<thead>
<tr>
<th>S.C</th>
<th>G</th>
<th>Algorithm for Partition into Paths of length 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

Approach

- Understand the problem
- Build some gadgets
- Combine gadgets

Approach: Grundy numbering

- Understand the problem
 - Build some simple graphs that have Grundy numberings
 - Build some that don’t
- Build some gadgets
 - Build a gadget that enforces the truth assignment condition
 - Build a gadget that enforces a satisfiability condition
- Combine gadgets

Truth Assignment

- For each variable x exactly one of x and its complement is set to true and the other is set to false

Satisfiability

- For each clause c, at least one literal in c evaluates to true.