Evolutionary Computation

- Evolutionary algorithms
- Genetic algorithms
- Genetic programming
- Artificial life ("alife")

Historical

- Looked at derivation of
 - finite-state machines
 - controllers
 - data reduction through successive mutations

Among Dr. Holland’s Opuses

- See http://www.pscs.umich.edu/jhhfest/jhh-pub.html for more.

Holland’s Progeny

- David Goldberg
- Stephanie Forrest
- Kenneth DeJong
- Melanie Mitchell
- John Koza
- many others
- See http://www.pscs.umich.edu/jhhfest/schedule-closed.html for Festschrift papers.
Genetic Algorithms

- An approach to difficult optimization problems (TSP, etc.)
- Heuristic, not guaranteed to find true optima
- Finds good approximations fast

GA Applications

- Hundreds, if not thousands
- All manner of optimization problems in engineering, science, finance, etc.
- Application to neural networks:
 - Evolve the structure and/or weights of a neural network, rather than train it.

Principles of Natural Selection

- Concentrate on population rather than a single individual
- Individuals that are fit enough to survive will reproduce
- Create new individuals from existing ones
 - Crossover
 - Mutation

Genetic Flow Diagram

- Population
- Selection criterion
- Subset of Population
- Operators
 - until an individual exists satisfying performance criterion or resources are exhausted

Common Operators

- **Copy** (aka Reproduce): An individual from the current generation is copied into the next generation.
- **Crossover**: Two (or more) individuals from the current generation are used to form an individual in the next generation.
- **Mutate**: A single individual from the current generation is mutated to form an individual in the next generation.

Individuals

- Individuals are represented by their genome, or genotype.
- The genotype may be the “program” for the actual individual, or “phenotype”.

Individuals are represented by their genome, or genotype.
Genetic Algorithm Example

- Consider the “subset sum” problem:
 - Given a set of integers S and a target value T, find a subset of S that the maximum sum without exceeding T.

Example

- $S = \{19, 23, 35, 52, 61, 68, 76, 84, 92\}$
- $T = 200$
- Genome is an element of $\{0, 1\}^9$
- Possible individuals:
 - 010001001, sum$\{23, 68, 92\} = 183$
 - 101000010, sum$\{19, 35, 84\} = 138$

Fatal Mutations

- Note that a mutation could be “fatal”, resulting in a totally unfit individual. The “carcass” of this individual could still be in the next generation, however.

Genetic Approach

- As the genome, use a bit-vector.
- There is one bit for each element in the set S.
- The bit is 1 iff the element is in the subset.

What can we try to produce more fit individuals?

- **Mutation**: change a random bit:
 - 10100010, sum$\{19, 35, 84\} = 138$
 - 111100010, sum$\{19, 23, 35, 84\} = 161$
What can we try to produce more fit individuals?

- **Crossover**: Combine two individuals
 - 00110000, sum(35, 52, 61) = 148
 - 10000110, sum(19, 76, 84) = 179

- New genomes:
 - 001000110, sum(35, 76, 84) = 195
 - 100110000, sum(19, 52, 61) = 132

Crossover Variations

- Sometimes two crossover points are chosen, rather than one, and the subsequences between them are swapped.

Main Loop of the Subset Sum GA Program (1)

```java
public void evolve(int generations) {
    for (int generation = 0; generation < generations; generation++) {
        retain(); // retain the more fit individuals
        crossover(); // perform crossover on those retained
        mutate(); // mutate the resulting population
        sort(); // sort by fitness
    }
}
```

Sample Run of `subsum` (1)

- **Subset sum problem**
 - generations = 100
 - population size = 10
 - retain size = 5
 - immutable = 5
 - mutation rate = 0.1
- **target** = 200.0
- **values** = (19, 23, 35, 52, 61, 68, 76, 84, 92)

Sample Run of `subsum` (1)

- generation 0, average fitness = 33.7:
 - 181/200 (r 19) 000111000 52 61 68
 - 164/200 (r 36) 100010010 19 61 84
 - 1/200 (r 36) 000011100 61 68 76
 - 1/200 (r 36) 010111000 23 52 61
 - 1/200 (r 36) 000100110 61 76
 - 1/200 (r 36) 000011110 52 61 68
 - 1/200 (r 36) 010111100 23 52 61
 - 1/200 (r 36) 000101100 61 76
 - 1/200 (r 36) 000111100 52 61 68
 - 1/200 (r 36) 000111110 61 68 76
 - 1/200 (r 36) 101101101 19 35 52 68
 - 1/200 (r 36) 000101110 61 68
 - 1/200 (r 36) 000111010 61 68
 - only two fit individuals
Sample Run of subsum (2)
generation 1, average fitness = 64.4:
181/200 (r 19) 000111000 52 61 68
164/200 (r 36) 100010010 19 61 84
160/200 (r 40) 000000110 76 84
145/200 (r 55) 000100101 52 61 68
1/200 (r 201) 001100101 35 52 76 92
-1/200 (r 201) 000011110 61 68 76 84
-1/200 (r 201) 100011110 19 61 68 76 84
-1/200 (r 201) 000010110 61 76 84

four fit individuals

Sample Run of subsum (3)
generation 2, average fitness = 114.3:
197/200 (r 3) 000110010 52 61 84
181/200 (r 19) 000111000 52 61 68
164/200 (r 36) 100010010 19 61 84
160/200 (r 40) 000000110 76 84
145/200 (r 55) 000010010 61 84
96/200 (r 104) 001010000 35 61
54/200 (r 146) 101000000 19 35
-1/200 (r 201) 000110011 52 61 84 92
-1/200 (r 201) 001100101 35 52 76 92

eight fit individuals

Sample Run of subsum (4)
generation 5, average fitness = 157.7:
200/200 (r 0) 100111000 19 52 61 68
197/200 (r 3) 000110010 52 61 68
197/200 (r 3) 000110010 52 61 68
181/200 (r 19) 001111000 52 61 68
181/200 (r 19) 001111000 52 61 68
179/200 (r 21) 001100001 35 52 76
164/200 (r 36) 100010010 19 61 84
164/200 (r 36) 100010010 19 61 84
115/200 (r 85) 101010000 19 35 61
-1/200 (r 201) 000110101 52 61 68 84

best possible fit reached in generation 5

Complexity Considerations
- All possible subsets of n values can be enumerated in \(2^n\) steps.
- For low n (say in the 20's or less), this might be feasible.
- For larger n, it is not \((2^{32} = \text{about 5 billion})\.
- For large n, the genetic algorithm can produce good, if not optimal, answers in much less time than enumeration.

Fatal Crossovers
- Just as with mutation, crossover could produce one or more individuals that are totally unfit.

Other Genomes
- A bit vectors is not the only way, or necessarily the best way, to represent a genome.
- Other possibilities:
 - A list or matrix of integers or floats
Challenges in representing Genomes:
Traveling Salesperson Problem

- Not every optimization problem has a genome encoding that will allow naïve mutations and crossovers.
- Consider the TSP:
 - An instinctive way to represent a genome is as a permutation of the cities on a tour.

Crossing two Permutations

- Consider two permutations:
 - \([1, 3, 2, 6, 5, 4]\)
 - \([2, 3, 4, 1, 6, 5]\)

- Result of naïve crossing:
 - \([1, 3, 4, 1, 6, 5]\)
 - \([2, 3, 2, 6, 5, 4]\)

- Unfortunately, these sequences are not permutations.

Reinterpreting permutation crossings

- Consider two permutations:
 - \([1, 3, 2, 6, 5, 4]\)
 - \([2, 3, 4, 1, 6, 5]\)

- Interpret as:
 - Insert 2, 6, 5 in the second genome at the first crossover point and remove those elements from wherever they occurred in the second genome.

Net effect of Crossover

- The results share some of the structure of both parents, which is desirable.
Keller’s TSP GA

- /cs/cs152/ga/tsp
- Uses same overall loop as the subset sum algorithm.
- The genome is now a permutation vector.
- Crossover is as described.
- Mutation consists of swapping two random elements of the permutation.

TSP GA in operation (1)

- Traveling Salesperson Problem
- generations = 1000
- population size = 50
- retain size = 25
- immutable = 15
- mutation rate = 0.1

TSP GA in operation (2)

<table>
<thead>
<tr>
<th>Costs:</th>
<th>0.0</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
<th>6.0</th>
<th>7.0</th>
<th>8.0</th>
<th>9.0</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>5.0</td>
<td>3.0</td>
<td>7.0</td>
<td>2.0</td>
<td>5.0</td>
<td>1.0</td>
<td>3.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
<td>6.0</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
<td>7.0</td>
<td>3.0</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>6.0</td>
<td>0.0</td>
<td>5.0</td>
<td>2.0</td>
<td>1.0</td>
<td>6.0</td>
<td>5.0</td>
<td>4.0</td>
<td>6.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
<td>7.0</td>
<td>7.0</td>
<td>0.0</td>
<td>5.0</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>3.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>4.0</td>
<td>2.0</td>
<td>4.0</td>
<td>2.0</td>
<td>9.0</td>
<td>0.0</td>
<td>3.0</td>
<td>5.0</td>
<td>4.0</td>
<td>7.0</td>
<td>8.0</td>
<td>3.0</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>7.0</td>
<td>1.0</td>
<td>1.0</td>
<td>3.0</td>
<td>0.0</td>
<td>2.0</td>
<td>6.0</td>
<td>1.0</td>
<td>7.0</td>
<td>6.0</td>
</tr>
<tr>
<td>6.0</td>
<td>1.0</td>
<td>7.0</td>
<td>6.0</td>
<td>1.0</td>
<td>5.0</td>
<td>2.0</td>
<td>0.0</td>
<td>9.0</td>
<td>6.0</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>7.0</td>
<td>3.0</td>
<td>1.0</td>
<td>5.0</td>
<td>2.0</td>
<td>4.0</td>
<td>6.0</td>
<td>9.0</td>
<td>0.0</td>
<td>3.0</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>8.0</td>
<td>0.0</td>
<td>5.0</td>
<td>0.0</td>
<td>1.0</td>
<td>7.0</td>
<td>2.0</td>
<td>5.0</td>
<td>7.0</td>
<td>8.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

TSP GA in operation (3)

- Improvement in generation 1: 25: 4 6 14 9 11 12 3 5 13 10 8 2
- Improvement in generation 9: 22: 4 6 9 14 10 11 7 12 5 3 13 10 8 2
- Improvement in generation 10: 20: 4 6 9 14 10 11 7 12 13 3 15 10 8 2
- Improvement in generation 30: 18: 4 6 9 14 10 12 7 11 5 3 15 10 8 2
- Improvement in generation 317: 17: 4 6 9 14 10 12 5 13 11 7 1 0 8 2

best after 1000 generations, 17: 4 6 9 14 10 12 5 13 11 7 1 0 8 2

verification: 4 (1.0) 6 (1.0) 9 (2.0) 14 (1.0) 10 (1.0) 12 (1.0) 5 (2.0) 13 (1.0) 3 (1.0) 11 (1.0) 7 (1.0) 1 (1.0) 0 (1.0) 8 (1.0) 2 (1.0) 4

Roulette- Wheel Optimization

- Rather than keep n copies of the same individual, record the individual once, along with its % of the population.
- Then during selection, choose individuals by spinning a "roulette wheel" biased with the given % toward the individual.
GA Perspective

- Like gradient descent, GA’s can also get stuck in local fitness extrema.
- The space is different; for GA’s, a stuck point corresponds to a population from which crossover does not yield any better individuals.
- Mutation is one hope for leaving such an extremum. Other possibilities are simulated annealing, random restarts.

Evolution Options

- Since we are simulating using a computer, not actually evolving species, there is no reason why Lamarckian, rather than Darwinian, evolution could not be used.
- Most results to date are Darwinian.
- Lamarckian could integrate other learning models to breed new species from individuals that have learned.

Lamarckian Leads

Genetic Programming

- Genetic programming is the GA idea applied to evolving *programs* (as opposed to just numbers).
- The prime mover of this field is John R. Koza.

Reference

John R. Koza
Genetic Programming: On the Programming of Computers by Means of Natural Selection
MIT Press, 1996

For animated tutorial, please see:
Mutation of a Program

Crossover of Two Programs

Genetic Programming Demo: Symbolic Regression
(http://www.ifh.ee.ethz.ch/~gerber/approx/default.html)

The evolved program

Truck-Backer using GP
http://www.handshake.de/user/blickle/Truck/index.html

GP Caution

- Typically fitness of genetically-evolved programs is established by working on a large number of test cases.
- We know this is not completely sound.
- A possible fruitful area is to evolve a proof of correctness along with the program itself. I know of no work in this area.

Engineering Applications: Evolving Hardware (Analog & Digital)

- The evolved program is a list of instructions for constructing the circuit, rather than the graph of the circuit itself.
- This approach has also been used to construct neural networks.
- The results for circuit design are competitive with, or superior to, human engineering.
- Numerous patents have been reinvented using GP.
Generating Analog Circuits

An analog filter generated by genetic programming

A Genetically-Evolved Amplifier

Commercial Applications: Marketing Projections
http://www.statsoft.com/textbook/stcluan.html#h

Other Opportunities
- Parallelism in Computation (local work of Beda & Margileth, and others)
- Parallelism optimizing transformations
- Music
- Robotics