Compilation Considerations for Parallel and Vector Architectures

A Few Sources

Bernstein’s Conditions (1966)

- For a statement S:
 - $\text{IN}(S) = \text{set of variables, registers, or locations used by } S$
 - $\text{OUT}(S) = \text{set written to by } S$
 - $S_1; S_2$ (sequence) is equivalent to $S_1 || S_2$ (parallel) provided that
 - $\text{OUT}(S_1) \cap \text{OUT}(S_2) = \emptyset$
 - $\text{OUT}(S_1) \cap \text{IN}(S_2) = \emptyset$
 - $\text{OUT}(S_2) \cap \text{IN}(S_1) = \emptyset$

Data Dependence

- Expresses constraints on parallel execution, as derived from sequential execution semantics
- Types of Dependence (Kuck, Wolfe, et al.):
 - Flow dependence
 - Anti dependence
 - Output dependence

Flow Dependence

- A variable assigned to in one statement is used in a later one:
 - $A = 5$
 - $B = A \times A$

Anti Dependence

- A variable use in one statement is assigned to in a later one:
 - $B = A \times A$
 - $A = 5$
Output Dependence

- A variable assigned to in one statement is later re-assigned to:

 \[
 A = B \times B \\
 A = 5
 \]

Removable Dependences

- Anti Dependence and Output Dependence are **removable**
- They are artifacts of using variables as if memory location, rather than purely for their values.
- Flow Dependence is **not removable**; it expresses essential precedence.
- Clarification of whether location- or value-based dependency is being considered will be left to context.

Notation

- \(S_1 \delta f S_2 \) means \(S_2 \) is flow dependent on \(S_1 \)
- \(S_1 \delta a S_2 \) means \(S_2 \) is anti dependent on \(S_1 \)
- \(S_1 \delta o S_2 \) means \(S_2 \) is output dependent on \(S_1 \)

Dependence Relations determine a Partial Order on Statement Execution

- Statements must be done in sequence
- Statements can be done in either order, or in parallel

Location- vs. Value-Based

- Consider

 \[
 \begin{align*}
 A &= 5 \\
 B &= A + 7 \\
 A &= 99 \\
 C &= A \times 2
 \end{align*}
 \]

By using a different variable, the dependency is removed

- Consider

 \[
 \begin{align*}
 A &= 5 \\
 B &= A + 7 \\
 AA &= 99 \\
 C &= AA \times 2
 \end{align*}
 \]
Loops add to the Challenge

- Consider for \(K = 1 \) to \(10 \)
 \[
 S_1(K) \quad A[K] = B[K]
 \]
 - Conclude: All instances \(S_1(K) \) can be done concurrently (since no arrows).

Loops add to the Challenge

- Consider for \(K = 2 \) to \(10 \)
 \[
 S_1(K) \quad A[K] = A[K-1]
 \]
 - Conclude: All instances \(S_1(K) \) must be done in sequence.

Larger offsets allow more concurrency

- Consider for \(K = 3 \) to \(10 \)
 \[
 \]
 - \(S_1(3) || S_1(4) \) is possible
 - \(S_1(K) || S_1(K+1) \) is possible, \(K = 3, 5, \ldots \)

“Forward” Offsets

- Consider for \(K = 1 \) to \(9 \)
 \[
 S_1(K) \quad A[K] = A[K+1]
 \]
 - Conclude: All instances \(S_1(K) \) must be done in sequence (if location-based assumption used).

We can Transform the Previous Example

- For \(K = 1 \) to \(9 \)
 \[
 S_0(K) \quad B[K] = A[K+1]
 \]
 - \(S_0(1) \)
 - \(S_0(2) \)
 - \(S_0(9) \)

Transformation reduces sequence constraints

- For \(K = 1 \) to \(9 \)
 \[
 S_0(K) \quad B[K] = A[K+1]
 \]
 - \(S_0(1) \)
 - \(S_0(2) \)
 - \(S_0(9) \)

F90 style:

\[
B(1:9) = A(2:10)
A(2:10) = B(2:10)
\]
The type of transformation just shown can be automated.

This is done routinely in compilers for high-performance machines.

Parallel Execution of Loops Strategy

- Try to issue different instances of a loop body to separate processing elements.
- Generally loops occur nested; try to find appropriate nesting level where different instances can be issued.

Similar issue to Parallelization: Vectorization

- Vector machines:
 - Exploit fine-grain parallel operations (+, *, /) on vector elements
 - Typically done with vector registers
 - Vectorizing concentrates on inner loop
 - Parallelizing concentrates on outer loops (coarser grain)

Example of Loop Vectorization

- do K = 1 to N

Vectorizes to (using F90 notation):

- D(1:N) = A(2:N+1)*5
- A(1:N) = B(1:N) + C(1:N)

Example of Loop Vectorization

- do K = 1 to N

Vectorizes to (using F90 notation):

- D(1:N) = A(2:N+1)*5
- A(1:N) = B(1:N) + C(1:N)

Dependence Distance

- The dependence in the previous example can be summarized:
 \[S_0(K) \delta_{i} S_1(K) \]

- This essentially says:
 - The \(i \)th iteration of \(S_0 \) must be done before the \(i+1 \)th iteration of \(S_1 \).
Dependence Distance

- In general, there may be a different set of dependence distances for each array:

 \[
 \begin{align*}
 S_0(K) & : A[K] = B[K-1] \\
 S_1(K) & : B[K] = A[K]
 \end{align*}
 \]

 Each places a constraint on loop restructuring.

- \(\delta_f(1) \) for A \(\delta_f(0) \) for B

Direction Vectors

- Less precise than Dependence Distances, but frequently used:
 - \(\delta_f(<) \) used in place of \(\delta_f(n) \) where \(n > 0 \)
 - \(\delta_f(=) \) used in place of \(\delta_f(0) \)
 - \(\delta_f(>) \) used in place of \(\delta_f(n) \) where \(n < 0 \)

 Advantage of using > is that \(n \) might not be fixed, as in:

 \[
 \begin{align*}
 \text{do } K = 2 \text{ to } 10 \\
 C[K] & = A[K]
 \end{align*}
 \]

 Here the dependence distance increases with \(K \).

Example

- \(\delta_f(=) \) or \(\delta_f(<) \)

\[
\begin{align*}
S_1 & : C[K] = A[K+1]
\end{align*}
\]

- \(\delta_f(1) \) or \(\delta_f(<) \)

\[
\begin{align*}
S_1 & : C[K] = A[K+1]
\end{align*}
\]

doacross

- \(\delta_f(=) \)

\[
\begin{align*}
\end{align*}
\]

- is optimized to

\[
\begin{align*}
\text{doacross } K = 1 \text{ to } N \\
\end{align*}
\]

doacross Example

- Original loop

\[
\begin{align*}
\text{do } K = 1 \text{ to } N \\
\end{align*}
\]

- is optimized to

\[
\begin{align*}
\text{doacross } K = 1 \text{ to } N \\
\end{align*}
\]
Non-doacross Example

Original loop
\[
\begin{align*}
 & \text{do } K = 2 \text{ to } N \\
 & \quad A[K] = C[K] \\
\end{align*}
\]

\[\delta_{(>)}\]

\[
\begin{align*}
 & \text{cannot be optimized using doacross alone.}
 \\
 & \text{We could provide additional synchronization on the use of } A[K-1] \text{ to do it, but it wouldn't be pure doacross.}
\end{align*}
\]

Loops that “Carry” Dependence

As we saw, loops having only \(\delta_{(>)}\) are optimizable using doacross.

A loop with \(\delta_{(<)}\) or \(\delta_{(>)}\) carries the/a dependence that constrains parallel execution.

Nested Loops

For nested loops, a vector of dependences is used, e.g. \(\delta_{(<)}\) or \(\delta_{(=)}\) with one component per loop nest.

When loops are nested, the outermost loop with a \(\delta_{(=)}\) or \(\delta_{(>)}\) carries the dependence.

Nested Loop Example

\[
\begin{align*}
 & \text{do } K = 2 \text{ to } N \\
 & \quad \text{do } J = 2 \text{ to } N \\
\end{align*}
\]

\[\delta_{(=)} \delta_{(<)}\]

The inner loop carries the dependence for A; no loop carries the dependence for B.

Therefore the outer can be parallelized using doacross.

Nested Loop Example

\[
\begin{align*}
 & \text{do } K = 2 \text{ to } N \\
 & \quad \text{do } J = 2 \text{ to } N \\
\end{align*}
\]

\[\delta_{(=)} \delta_{(<)}\]

Exercise

How to parallelize:

\[
\begin{align*}
 & \text{do } K = 2 \text{ to } N \\
 & \quad \text{do } J = 2 \text{ to } N \\
\end{align*}
\]
Exercise

- How to parallelize:

 \[
 \begin{align*}
 & \text{do } K = 2 \text{ to } N \\
 & \hspace{1em} \text{do } J = 2 \text{ to } N \\
 \end{align*}
 \]

- The outer loop carries the dependency

Exercise

- do \(K = 2\) to \(N\)

 \[
 \begin{align*}
 & \text{do } J = 2 \text{ to } N \\
 & \hspace{1em} A[K, J] = C[K, J] \\
 & \hspace{1em} B[K, J] = A[K-1, J]
 \end{align*}
 \]

- Parallel:

 \[
 \begin{align*}
 & \text{do } K = 2 \text{ to } N \\
 & \hspace{1em} \text{doacross } J = 2 \text{ to } N \\
 \end{align*}
 \]

Loop Interchanging

- do \(K = 1\) to \(N\)

 \[
 \begin{align*}
 & \text{do } J = 1 \text{ to } N \\
 \end{align*}
 \]

- \(S_1 \delta^f_{(<, <)} S_1\) implies inner loop cannot be vectorized.
- No dependencies of form \(\delta^f_{(<, >)}\) implies loops can be interchanged

Loop Interchanging

- do \(K = 1\) to \(N\)

 \[
 \begin{align*}
 & \text{do } J = 1 \text{ to } N \\
 \end{align*}
 \]

- do \(J = 1\) to \(N\)

 \[
 \begin{align*}
 & \text{do } K = 1 \text{ to } N \\
 \end{align*}
 \]

- Now have \(\delta^f_{(<, _)}\)

Loop Interchanging

- do \(J = 1\) to \(N\)

 \[
 \begin{align*}
 & \text{do } K = 1 \text{ to } N \\
 \end{align*}
 \]

- Now have \(\delta^f_{(<, _)}\)
- Execute as:

 \[
 \begin{align*}
 & \text{do } J = 1 \text{ to } N \\
 \end{align*}
 \]