CS140: Algorithms

Z Sweedyk
Lecture 1

Last class
The two important questions we consider in CS140:
- Is the computational procedure correct?
- Is the algorithm fast?

How do we measure speed?

- What to measure
- Big-O notation/rate of growth
- Loop counting
- Series
- Recurrence relations

Running Time
Where to measure?

A useful assumption
T_A and T_M differ by no more than a multiplicative constant

More formally
There is some constant c such that for any input Z, $\frac{T_A(Z)}{c} \leq T_M(Z) \leq cT_A(Z)$
Running Time
Where to measure?

- Measurement is easy and meaningful
- Program
- Machine code
- Measurement is meaningful
- Machine

Running Time:
What to measure?

- Run time depends on input size
- Run time can vary on different inputs of size n.

Pick special case

- Run time depends on input size
- Run time can vary on different inputs of size n.
- Choose case:
 - Worst case (show in bold)
 - Best case
 - Average case
 - Etc.

Worst case performance of algorithm

- We can compute this function at a finite number of points.
- Better yet, we can model this function for all input sizes.

A general problem ...

- Question: How can we give a succinct description of an arbitrary function?
- Answer: Big-O notation.

Today

- What to measure
- Big-O notation/rate of growth
- Loop counting
- Series
- Recurrence relations
Upper Bounds

- \(f : \mathbb{N} \to \mathbb{N} \) and \(g : \mathbb{N} \to \mathbb{N} \) are positive-valued, monotonically increasing functions.
- \(O(g(n)) = \{ f(n) : \text{there are constants } c \text{ and } M \text{ such that } f(n) \leq c \cdot g(n) \text{ for all } n \geq M \} \)

Proving \(f(n) = O(g(n)) \)

Consider \(h(n) = f(n)/g(n) \) as \(n \) goes to infinity
- \(h(n) \) converges
- \(h(n) \) diverges
 - Unbounded
 - Bounded

Some useful observations about Big-O

- If \(f(n)/g(n) \) is bounded then \(f(n) \text{ ___ } O(g(n)) \).
- If \(f(n)/g(n) \) is unbounded then \(f(n) \text{ ___ } O(g(n)) \).

Logarithms

For which pairs \(f(n), g(n) \) is \(f(n) = O(g(n)) \)?

- \(\lg n \)
- \(\log n \)
- \(\log^2 n \)
- \(\lg 10000n \)

Example

\[
\lim_{n \to \infty} \frac{\lg n}{\log n^2} = \frac{(\lg 10)}{2}
\]

(Useful observation: \(\log n^2 = (2/\lg 10) \lg n \))

Limits

1. \(\lim_{n \to \infty} \frac{\log n^2}{\lg n} \)
2. \(\lim_{n \to \infty} \frac{\lg n}{\log^2 n} \)
3. \(\lim_{n \to \infty} \frac{\lg^2 n}{\lg n} \)
4. \(\lim_{n \to \infty} \frac{\lg n}{\log 10000 n} \)
Polynomials
For which pairs $f(n), g(n)$ is $f(n) = O(g(n))$?
- n
- n^2
- $1000n^2 + n$

Exponentials
For which pairs $f(n), g(n)$ is $f(n) = O(g(n))$?
- 2^n
- 3^n
- $2(n^2)$
- $(2^n)^2$

Some rules of thumb
- Polylogs are slower growing than polynomials
 For any $k, j > 0$:
 - $\log^j n = O(n^k)$ and $n^k \neq O(\log^j n)$
- Polynomials are slower growing than exponentials
 For any $k>0$ and $r>1$:
 - $n^k = O(r^n)$ and $r^n \neq O(n^k)$

L'hospital's rule
- $\lim_{n \to \infty} \frac{\log n}{n^k} = 0$
- $n^k / \log n$ diverges as n goes to infinity

Polynomially bounded functions
$f(n)$ is polynomially bounded if there is a constant k such that $f(n) = O(n^k)$

Logs, Polys, and Exps
Which of the following functions are polynomially bounded?
- $\log n$
- n^3
- 2^n
Other functions

- Factorial: n! = n \cdot (n-1)! \quad 0! = 1
- Tower of 2s: \quad 2 \uparrow\uparrow n = 2 \uparrow\uparrow(n-1), \quad 2 \uparrow\uparrow 0 = 1
- Iterated log: \quad \log^*(n) = m \quad \text{such that} \quad 2 \uparrow\uparrow (m-1) < n \leq 2 \uparrow\uparrow m
- Ceil-ceil: \quad \lceil \lceil n \rceil \rceil = 2^m \quad \text{such that} \quad m - 1 < \log n \leq m

Logs, polys, exps, and others

Compare the rates of growth of the following functions:
\lg n, \quad n^3, \quad 2^n, \quad n!, \quad 2 \uparrow\uparrow n, \quad \log^*(n), \quad \lceil n \rceil

Another useful observation

- If \quad \frac{f(n)}{g(n)} \quad \text{diverges then so does} \quad 2^{f(n)} / 2^{g(n)}
- If \quad \lg(f(n)) / \lg(g(n)) \quad \text{diverges then so does} \quad f(n) / g(n)

Beyond O

\begin{align*}
\text{real numbers} & \quad \text{functions} \\
\leq & \quad \Omega \\
\geq & \quad \Theta \\
= & \quad o \\
< & \quad \omega
\end{align*}

Lower Bounds

- f: \mathbb{N} \rightarrow \mathbb{N} \quad \text{and} \quad g: \mathbb{N} \rightarrow \mathbb{N} \quad \text{are positive-valued, monotonically increasing functions.}
- \Omega(g(n)) = \{ f(n) : \text{there are constants} \ c \ \text{and} \ M \ \text{such that} \ f(n) \geq c \cdot g(n) \ \text{for all} \ n \geq M \}

Definition: \Theta

f(n) = \Theta(g(n)) \quad \text{if the following hold:}
1. \ f(n) = O(g(n)), \quad \text{and}
2. \ f(n) = \Omega(g(n))
Definition: \textit{little-o, little-ω}

- \(f(n) = o(g(n)) \) if \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \)
- \(f(n) = \omega(g(n)) \) if \(\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \)

Logs, polys, exps, and others

Compare the following functions.
Which of \(O, \Omega, \Theta, o, \) and \(\omega \) apply?

\(\log n, n^3, 2^n, n!, 2 \uparrow\uparrow n, \log^*(n), \lceil n \rceil \)

A slight twist...

Is \(f(2n) = O(f(n)) \)?
1. \(f(n) = 1 \): Is \(2n = O(n) \)?
2. \(f(n) = 3n \): Is \(6n = O(3n) \)?
3. \(f(n) = n^2 \): Is \(4n^2 = O(n^2) \)?
4. \(f(n) = 2^n \): Is \(4^n = O(2^n) \)?
5. \(f(n) = n! \): Is \((2n)! = O(n!) \)?

Today

- What to measure
- Big-O notation/rate of growth
- Loop counting
- Series

CS140 pragmatism

What is the asymptotic behavior of the worst-case running time of the algorithm?

CS140 pragmatism

Big-O
What is the asymptotic behavior of the worst-case running time of the algorithm?
CS140 pragmatism

What is the asymptotic behavior of the worst-case running time of the algorithm?

Special case

input

CS140 pragmatism

What is the asymptotic behavior of the worst-case running time of the algorithm?

Chosen resource

CS140 pragmatism

What is the asymptotic behavior of the worst-case running time of the algorithm?

Remember our assumption

In this class we’ll say

The running time of A is \(O(n^3) \).

The worst case running time of A is \(O(n^3) \).

A is \(O(n^3) \).

Rate of growth of common functions

- Review of properties/notation
- See CLR pp 32-37 for details

KNOW THIS STUFF

Today

- How should we measure the speed of an algorithm?
- Big-O notation/rate of growth
- Loop counting
- Series
Types of Algorithms

• Recursive Algorithm: one that calls itself

• Purely Iterative Algorithm: one that doesn’t

Run Time Analysis

• Iterative algorithm → Loop counting

• Recursive algorithm → Recurrence relations

Iterative Sorting Algorithms

• Insertion-sort
• Bubble-sort
• Modified Bubble-sort

Insertion-sort(S)
(in pseudo-code)

For j = 2 to n
key = S(j)
i = j-1
While i > 0 and S(i) > key
S(i+1) = S(i--)
S(i+1) = key

Correctness

• Inductive proof with loop invariant:
 When the for loop executes for the kth time, S(1), S(2), ..., S(k) are sorted in ascending order.

Loop Counting: Insertion-sort(S)

\[\sum_{j=2}^{n} (1 + \sum_{i=0}^{j-1} 1) = O(n^2) \]
Bubble-sort(S)

Bubble-sort(S)
For i=n down to 2
For j=1 to i-1
If S(j) > S(j+1) then swap(S(j), S(j+1))
Return

Correctness

• Inductive Proof with loop invariant:
 When the i-loop completes its kth execution,
 • S(n-k+1), S(n-k+2), ..., S(n) is sorted in ascending order, and
 • the max(S(1), ..., S(n-k)) ≤ S(n-k+1).

Does Bubble-sort do too much work?

1, 3, 2, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 4

Modified Bubble-sort

Modified-Bubble-sort(S)
SWAP=T
For i=n down to 2
If SWAP=F then return
SWAP=F
For j=1 to i-1
If S(j) > S(j+1) then swap(S(j), S(j+1)) and set SWAP=T
Return

Example

1, 3, 2, 4, 5
1, 2, 3, 4, 5
1, 2, 3, 4, 5

Loop counting: M-Bubble-sort

Modified-Bubble-sort(S)
\[
1 + \sum_{i=1}^{n-1} 1 + \sum_{j=1}^{i-1} \left(1 + \sum_{k=1}^{j-1} 4 \right)
\]
= O(n^2)
Summation

\[\sum_{i=2}^{n} \sum_{j=1}^{i-1} c = c \sum_{i=1}^{n-1} (i-1) = c (\frac{n(n-1)}{2}) - c = O(n^2) \]

Series

- A series is a summation of terms
- Common series
 - Arithmetic series: \(1+2+...+n\)
 - Geometric series: \(1+a+a^2+...+a^n\)

Series

Things we want to do:

- Solve exactly
- Bound above or below
- Prove that a solution (or bound) is correct

Closed form solutions to some common series

- \(f(n) = 1+2+...+n = \frac{n(n+1)}{2}\)
- \(f(n) = 1^2+2^2+...+n^2 = \frac{2n^3+3n^2+n}{6}\)
- \(f(n) = 1+a+a^2+...+a^n = \frac{a^{n+1}-1}{a-1}\) if \(a \neq 1\)
- \(f(n) = 1+a+a^2+... = \frac{1}{1-a}\) if \(0 \leq a < 1\)

Series

Things we want to do:

- Solve exactly
- Bound above or below
- Prove that a solution (or bound) is correct

Upper Bounds on series

For any constant \(k\):

\[\sum_{i=1}^{n} i^k \leq \frac{n^{k+1}}{(k+1)} = O(n^{k+1}) \]

Is this a good upper bound?
Lower Bounds on series

For any constant k:
\[
\sum_{i=1}^{n} i^k \geq \sum_{i=\lceil n/2 \rceil}^{n} i^k \\
\geq \sum_{i=\lceil n/2 \rceil}^{n} (n/2)^k \\
= \Omega(n^{k+1})
\]

So $\sum_{i=1}^{n} i^k = \Theta(n^{k+1})$

Series

Things we want to do:

- Solve exactly
- Bound above or below
- Prove that a solution (or bound) is correct

Proving correctness

• Claim: $\sum_{i=1}^{n} i^2 = (2n^3 + 3n^2 + n)/6$
• Claim holds for $n=1$.
• If the claim holds for n then it holds for $n+1$:
\[
\sum_{i=1}^{n+1} i^2 = (n+1)^2 + \sum_{i=1}^{n} i^2 \\
= (n+1)^2 + (2n^3 + 3n^2 + n)/6 \\
= (2(n+1)^3 + 3(n+1)^2 + (n+1))/6
\]

Run Time Analysis

• Iterative algorithm → Loop counting
• Recursive algorithm → Recurrence relations
 1. Write the recurrence relation
 2. Convert the recurrence relation to a series
 3. Solve the series

Sort3: A Recursive Algorithm for SIAO

Sort3(S)
 If ||S|| <= 1
 Return: S
 Else
 Return: Sort3(S\max-element(S)), max-element(S)

1. Write the recurrence relation

Let $T(n)$ be the running time of Sort3:
\[
T(1) = c_2 \\
T(n) = c_1 n + T(n-1), n \geq 1
\]
2. Convert to series

\[T(1) = c_2 \]
\[T(n) = c_1n + T(n-1), n>1 \]
\[\downarrow \]
\[c_2 + \sum_{i=2}^{n} c_1i \]

3. Solve

\[c_2 + \sum_{i=2}^{n} c_1i \]
\[\longrightarrow \]
\[c_2c_1c_i(n+1)/2 = O(n^2) \]

Recurrence Relations

Shortcuts and other tools:
- Guess and prove
- Master method
- Unwinding
- WORK TREES

Steps 2-3: Guess and Prove

- \(T(n)=c_1n + T(n-1), T(1)=c_2 \)
- Guess: \(T(n) = O(n^2) \)
- Prove: We need to show that there exists constants \(c \) and \(M \) such that \(T(n) \leq cn^2 \) for all \(n \geq M \)

Guess and Prove cont.

- \(T(1) \leq c \) provided \(c \geq c_1 \)

- Suppose \(T(n-1) \leq c(n-1)^2 \).
 \(T(n) = c_1n + T(n-1) \)
 \leq c_1n + c(n-1)^2
 = c_1n + c(n^2 - 2n + 1)
 = cn^2 - (2c - c_1)n + c
 \leq cn^2 \) provided \(c \geq c_2 \) and \(n \geq 1 \)

Guess and Prove cont.

- \(T(n) \leq cn^2 \) for all \(n \geq 1 \), where
 \(c = \max(c_1, c_2) \)
- \(T(n) = O(n^2) \)
Guess and Prove cont.

• What if you guess is wrong?

• You'll reach a contradiction in the proof step

Recurrence Relations

Shortcuts and other tools:
- Guess and prove
- Master method
- Unwinding
- WORK TREES

Steps 2-3: Master Theorem

• Read the book

Warning - only works for certain types of recurrence relations

Recurrence Relations

Shortcuts and other tools:
- Guess and prove
- Master method
- Unwinding
- WORK TREES

Step 2: Unwinding

\[T(n) \leq c_1 n + T(n-1) \]
\[\leq c_2 n + c_2(n-1) + T(n-2) \]
\[\leq c_2 n + c_2(n-1) + c_2(n-2) + T(n-3) \]
...
\[\leq c_1 + \sum_{i=2}^{n} c_2 i \]

Recurrence Relations

Shortcuts and other tools:
- Guess and prove
- Master method
- Unwinding
- WORK TREES
Work Tree

Graphical representation of the "work" done by a recursive algorithm

Example: \(\text{Sort3}(3,1,5,2,4) \)

Level 0
- \(\text{Sort3}(3,1,5,2,4) \)

Level n-1
- \(\text{Sort3}(3,1,2) \)
- \(\text{Sort3}(2) \)
- \(\text{Sort3}(1) \)

Tree Nodes = Recursive calls

Example: \(\text{Sort3}(3,1,5,2,4) \)

Input size at level 5 = \(n \)
Input size at level 4 = \(n-1 \)
Input size at level 3 = \(n-2 \)
Input size at level 2 = \(n-3 \)
Input size at level 1 = \(n-4 \)

Work done at level 5 = \(c \)
Work done at level 4 = \(c \)
Work done at level 3 = \(c \)
Work done at level 2 = \(c \)
Work done at level 1 = \(c \)

Total work:
\[
\sum_{i=0}^{n-1} c(n-i) = cn(n+1)/2 = O(n^2)
\]

Example: \(\text{Sort3}(3,1,5,2,4) \)

Next time
- Work trees continued
- MergeSort
- A little probability theory
- QuickSort