Data Structures
- Elementary data structures
- Heaps
- Binary Search Trees
- Treaps

Elementary data structures
- Arrays and linked lists
- Stacks and queues
- Graphs
- Rooted trees

Arrays

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
</tr>
</thead>
</table>

- Read i^{th} cell · $O(___)$
- Write i^{th} cell · $O(___)$
- Insert i^{th} cell · $O(___)$
- Delete i^{th} cell · $O(___)$

Linked List

- Read i^{th} cell · $O(___)$
- Write i^{th} cell · $O(___)$
- Insert i^{th} cell · $O(___)$
- Delete i^{th} cell · $O(___)$

Stack

- Push(x, S)
- $x =$ Pop(S)
Stack

Implement with linked lists or arrays to get $O(_________)$ per operation:

- $\text{Push}(x,S)$
- $x=\text{Pop}(S)$

Queue

- $\text{Enqueue}(x,Q)$
- $x=\text{Dequeue}(Q)$

Implement with linked list or (circular) array to get $O(_________)$ time per operation:

- $\text{Enqueue}(x,Q)$
- $x=\text{Dequeue}(Q)$

Graph

$V=\{a,b,c,d\}$

$E=\{(a,b),(a,c),(b,c),(c,d)\}$
Directed Graph

\[V = \{a, b, c, d\} \]
\[E = \{(b, a), (b, c), (b, c), (d, c)\} \]

Graph - adjacency list

\[a: b, c \]
\[b: a, c \]
\[c: a, b, d \]
\[d: c \]

Graph - adjacency matrix

\[
\begin{array}{cccc}
 a & b & c & d \\
 a & 0 & 1 & 1 & 0 \\
 b & 1 & 0 & 1 & 0 \\
 c & 1 & 1 & 0 & 1 \\
 d & 0 & 0 & 1 & 0 \\
\end{array}
\]

Graphs

(n vertices, m edges)

- Is \((u, v)\) an edge of \(G\)?
 - Adjacency list: \(O(______)\)
 - Adjacency matrix: \(O(______)\)

- What are the neighbors of \(v\) in \(G\)?
 - Adjacency list: \(O(______)\)
 - Adjacency matrix: \(O(______)\)

Trees

- A tree is a connected, acyclic graph.

Rooted Trees

- A rooted tree is a connected, acyclic graph with one vertex designated as the root.
Rooted Trees
Implement with pointers
• What is the root of T? \(O(_____) \)
• What is the parent of \(v \)? \(O(_____) \)
• What are the children of \(v \)? \(O(_____) \)

Heap
• Data structure for a set of integers to facilitate

Heaps
A heap is a data-structure for storing integer that supports:
1. Build-heap(S): Return a heap on the integers in the set S.
2. Insert(x,H): Insert the integer x into the heap H.
3. Find-min(H): Return the smallest integer in the heap H.
4. Extract-min(H): Remove the smallest integer from the heap H and return it.

Heap
A heap is a data-structure for storing integer that supports:
1. Build-heap(S): Return a heap on the integers in the set S.
2. Insert(x,H): Insert the integer x into the heap H.
3. Find-min(H): Return the smallest integer in the heap H.
4. Extract-min(H): Remove the smallest integer from the heap H and return it.

Heap: \(\{7,1,5,4,2,6\} \)
1. Rooted, binary tree, filled level by level from the left.
2. (Min) Heap property: the integer stored at a node is no larger than those of its descendents.

Insert(3,H) - Step 1 (add)
Insert(3,H) – Step 2 (bubble up)

Heap

A heap is a data-structure for storing integer that supports:
1. Build-heap(S): Return a heap on the integers in the set S.
 \(O(lg n)\)
2. Insert(x,H): Insert the integer x into the heap H.
 \(O(1)\)
3. Find-min(H): Return the smallest integer in the heap H.
4. Extract-min(H): Remove the smallest integer from the heap H and return it.
A heap is a data-structure for storing integer that supports:

1. **Build-heap(S)**: Return a heap on the integers in the set S.
 $O(n)$

2. **Insert(x,H)**: Insert the integer x into the heap H.
 $O(\log n)$

3. **Find-min(H)**: Return the smallest integer in the heap H.
 $O(1)$

4. **Extract-min(H)**: Remove the smallest integer from the heap H and return it.
 $O(\log n)$

Heap

$\text{Build-heap\{7,1,5,4,2,6\}}$

Build rooted tree
Build-heap\{7,1,5,4,2,6\}

Fix subtrees

Heap property holds at leaves

Heap

Heap

Bubble down

Heap

Bubble down

Heap

Heap

Running Time

The leaves are at height 0. Consider the nodes at height \(i \).
How long does it take to fix a subtree rooted at height \(i \) assuming its children root heaps?
How many nodes are at height \(i \)?
What is the running time of Build-heap?

Implementing a heap in an array

2 4 3 6 5 7
Array Indexing

Heap-sort(S)

H=Build-heap(S)
For i=1 to n
S(i) = Extract-min(H)
Return

Heap-sort is
O(n lg n)

Dictionary Data Structure

Data structure that supports add, delete, find for set of keyed records.
- Binary search tree
- Balanced binary search tree
- General search tree
- Hash Table

Binary Search Tree for S

- T is a rooted, binary tree
- Each node in T is assigned a record in S (one-to-one)
- BST Property: For any node X in T
 - If node Y is in the left subtree of X then Y.key < X.key
 - If node Y in the right subtree of X then Y.key > X.key

BST

BST - Find (x)

If root.key=x return root
If x<root.key recurse on left subtree
If x>root.key recurse on right subtree
Insert (5)

Delete(5)
(Leaf is easy)

Delete(7)
(Node with 1 child is easy)

Delete(8) - Step 1

Delete(8) - Step 2

Operation Run Time

• Search(x) - $O(h)$
• Insert(x) - $O(h)$
• Delete(x) - $O(h)$
Keeping a good balance ...

- Search trees: $O(h)$ time per operation
- "Balanced trees" insure $O(\log n)$ time per operation.
 - How to balance
 - When and where to balance

How: Rotations

When to balance?

- Red/black trees
- 2-3 trees
- AVL trees
- Treaps
 - Makes the when & where question easy to answer!

Red-Black Trees

- Binary Search Tree that satisfies the following
 - Each node is colored either red or black
 - Every leaf is NIL and black
 - If a node is red each of its children are black
 - For a node x, every simple path from x to a leaf has the same number of black nodes

Color this to be a Red-Black Tree
Red-Black Tree

Claim
A Red-Black tree with n internal nodes has height at most 2 \(\lg (n+1) \).

Red-Black Tree: Insert 2

Red-Black Tree: Insert 10

Red-Black Fix

Red-Black Fix

Recolor
Red-Black Fix

1. Rotate left
2. Rotate right & recolor

YUCK

Treaps: Step 1

- $S=\{1, 3, 5, 7, 9\}$
- Each element of S is assigned a unique "heap key":
 - $T=(1, 15), (3, 10), (5, 30), (7, 0), (9, 25)$

Treaps: Step 2

- $(1, 15), (3, 10), (5, 30), (7, 0), (9, 25)$
- Build tree where
 - S-key satisfy BST Property
 - H-key satisfy Heap Property

Treap

- $T=(1, 15), (3, 10), (5, 30), (7, 0), (9, 25)$
- Root:
- Left subtree:
- Right subtree:
Treap

T = (1, 15), (3, 10), (5, 30), (7, 0), (9, 25)

Binary Tree Operations

• Insert
• Delete

Treaps

• Claim: If the heap keys are unique then the treap is unique.

• Proof:

Treap: Insert (6, -10)

Treap: Rotate
Treap: Rotate

(7,0)
(6,10)
(1,15)
(5,30)
(9,25)
(6,-10)

Treap: Rotate

(6,10)
(3,10)
(1,15)
(5,30)
(9,25)
(7,0)

Treaps

Claim: If the heap keys are chosen uniformly at random from [-B,B], where B>>n, then
1. With high probability the keys will be unique.
2. The expected height of the treap is $O(\log(n))$.