Today

- Lower bounds
 - Counting arguments
 - Ad hoc arguments
 - Adversary arguments

Run Time Bounds

Worst Case running times of classic sorting algorithms:
- Bubble-sort: $\Theta(n^2)$
- Insertion-sort: $\Theta(n^2)$
- Merge-sort $\Theta(n \log(n))$
- Heap-sort $\Theta(n \log(n))$
- Quick-sort $\Theta(n^2)$

Comparison-based sorting

A comparison-based sorting algorithm is one that doesn’t need to read the input, provided it is given the size of the input and a comparison oracle.

Lower Bound for Sorting

Theorem: Any comparison-based sorting algorithm has a worst-case running time that is $\Omega(n \log(n))$.

Proof of Theorem

A decision tree describes the queries of a comparison-based algorithm on input size n.

A root to leaf path represents the sequence of queries for a particular input.
Proof of Theorem cont.

Each leaf corresponds to the permutation that sorts the input.

Proof cont.

- There must be at least \(n! \) leaves.
- A binary tree with \(n! \) leaves has a path with length at least \(\log(n!) \).
- By Stirling's approximation, \(\log(n!) = \Omega(n \log(n)) \).

Today

- Lower bounds
 - Counting arguments
 - Ad hoc arguments
 - Adversary arguments

FIND-MIN

- How many comparisons does it take to find the minimum in a set of integers?
 - Answer: \(n-1 \)

FIND-MIN

- How many comparisons does it take to find the minimum in a set of integers?
 - Answer: \(n-1 \)

Upper Bound for FIND-MIN

Upper Bound Theorem: Finding the minimum in a set of \(n \) integers requires no more than \(n-1 \) comparisons.

Proof: Give algorithm
Lower Bound for FIND-MIN

Lower Bound Theorem: Finding the minimum in a set of integers requires at least \(n-1 \) comparisons.

Proof of Lower Bound:
- Consider an algorithm \(A \) on input of size \(n \).
- Let \(G \) be a graph with a vertex for each input integer. Initially \(G \) has no edges. When \(A \) compares two input values, we'll add an edge between the corresponding vertices of \(G \).
- \(A \) cannot conclude until \(G \) has \(\text{edges} \).
- Thus \(A \) cannot conclude until it has made \(\text{comparisons} \).

Today
- Lower bounds
 - Counting arguments
 - Ad hoc arguments
 - Adversary arguments

Upper Bound for FIND-MIN/MAX
- Upper Bound Theorem: Finding the minimum and maximum in a set of \(n \) integers requires no more than \(\lceil \frac{3n}{2} \rceil - 2 \) comparisons.
- Proof: Give an algorithm

Proof of Upper Bound:
- Algorithm for even \(n \):
 - Make \(n/2 \) pair-wise comparisons
 - Find the maximum of the winners with \(n/2-1 \) comparisons
 - Find the minimum of the losers with \(n/2-1 \) comparisons
- Algorithm for odd \(n \):
 - Run even algorithm on first \(n-1 \) integers
 - Compare the min and max to the last integer

Lower Bound for FIND-MIN/MAX
- Lower Bound Theorem: Finding the minimum and maximum in a set of \(n \) integers requires at least \(\lceil \frac{3n}{2} \rceil - 2 \) comparisons.
- Proof: Adversary argument
Example of an adversary

You pick a number \(y \) between 1 and 100
I have to guess \(y \) by posing queries of the form “Is it \(x \)?”
You answer "yes, \(x\leq y \)" or "no, \(y<x \)"

- How many queries can you force me to make?
- Prove it!

Adversary Argument to prove bound \(B \)
(for FIND MIN/MAX)

Adversary Algorithm

Find-Min/Max Algorithm

A set of integers \(S \):
A makes at least \(B \) comparisons on input \(S \)

FIND-MIN/MAX Adversary - Accounting

- Adversary = interactive comparison oracle
- Accounting scheme: For \(x \) in \(S \)

\[
\begin{align*}
b_{\text{MAX}}(x) &= 1 & \text{if the algorithm can rule out } x \text{ as the largest integer} \\
&= 0 & \text{otherwise} \\
b_{\text{MIN}}(x) &= 1 & \text{if the algorithm can rule out } x \text{ as the smallest integer} \\
&= 0 & \text{otherwise}
\end{align*}
\]

FIND-MIN/MAX Adversary - Strategy

- On query "Is \(x \leq y \)?"
- Answer consistently with previous answers
- If yes and no both consistent then answer so as to minimize the changes in \(b_{\text{MAX}} \) and \(b_{\text{MIN}} \) variables

FIND-MIN/MAX Adversary - Analysis

Consider a query "Is \(x \leq y \)?"

- If NO: \(b_{\text{MIN}}(x) \to 1 \) and \(b_{\text{MAX}}(y) \to 1 \)
- If YES: \(b_{\text{MAX}}(x) \to 1 \) and \(b_{\text{MIN}}(y) \to 1 \)

Proof of Lower Bound:

- Claim: At most \(\lceil n/2 \rceil \) queries can result in the change of two \(b_{\text{MIN/ MAX}} \) variables
- Claim: \(2n-2 \) changes must occur before the algorithm concludes

\[\Rightarrow \lceil n/2 \rceil + (2n-2) - 2\lceil n/2 \rceil \text{ queries are necessary} \]
Find-gap

- Input: $S: x_1, x_2, \ldots, x_n$ is a list of distinct integers sorted in ascending order.
- Question: Is there an index i such that $x_{i+1} < x_i$?
- How many elements of S have to be read (in worst case) in order to answer?

Exercise

- What is a good adversary strategy?
- What is a good algorithm strategy?

Double 0's

- Input: $B: b_1, b_2, \ldots, b_n$ n-bit vector of 0/1's
- Question: Are there two adjacent 0's?
- How many bits of B have to be read (in worst case) in order to answer?

Exercise

- What is a good adversary strategy?
- What is a good algorithm strategy?

Upper Bound

Claim: Double 0's can be solved with $f(n)$ queries where:

- $f(n) = n - 1$ if $n \equiv 1 \mod 3$
- $f(n) = n$ otherwise

Lower Bound

Double 0's cannot be solved with fewer than $g(n)$ queries where:

- $g(n) = n - 1$ if $n \equiv 1 \mod 3$
- $g(n) = n$ otherwise