Algorithm Design Techniques

- Induction
- Reduction

Self-Reduction

Reduction: $A \propto B$

Some reductions we've seen
- Sorting \propto Find-max
- General Selection \propto Find-median
Inductive Design to solve A

- One Stage
 - Self-Reduction

- Two Stage
 - Define B
 - Reduce A to B
 - Solve B using self-reduction

Strengthening the inductive hypothesis

Dominating Set

- A dominating set of a graph G is a subset W of the vertices of G such that every vertex in G is either in W or adjacent to a vertex in W.

Examples

Dominating Set in Trees with n or fewer nodes

Doesn’t seem to work

Dominating Set in Trees with n or fewer nodes: Define new problem

Is self-reducible
What do you want to know about the subtrees of node v?

Caveat: You have to reproduce that info for the subtree rooted at v.

Visualize a solution ...

1. v is in the DS
2. v is not in the DS
 A) a child of v is in the DS
 B) the parent of v is in the DS

What do you want to know about a child w?

1. Smallest dominating set that includes w.
2. Smallest dominating set that does not include w.
3. Smallest dominating set on the subtrees rooted at the children of w. (Note: w need not be covered.)

Definitions

1. I(w): Smallest dominating set of the subtree rooted at w that includes w.
2. E(w): Smallest dominating set of the subtree rooted at w that does not include w.
3. C(w): Smallest dominating set on the subtrees rooted at the children of w. (Note: w need not be covered.)

Caveat

Compute I(v), E(v) and C(v) if we have I(w), E(w) and C(w) for each child w of v?

I(v)=
E(v)=
C(v)=

Base Case

v is a leaf:
I(v)=
E(v)=
C(v)=
Dominating Set in Trees with \(n \) or fewer nodes

\[T \xrightarrow{\text{transform}} T_r \xrightarrow{\text{Compute LRC}} I(r) \xrightarrow{\text{transform}} W \]

Example

DS-tree algorithm

- Is it correct?
- Is it efficient?

Longest Increasing Subsequence

- Input: Sequence of integers \(X: x_1, x_2, \ldots, x_n \)
- Output: Longest increasing subsequence of \(X \); i.e., a subsequence \(Z: z_1, z_2, \ldots, z_k \) such that \(z_i < z_{i+1} \) for each \(i:1..k-1 \).

Example

- 1, -3, 2, 10, 8, 23, -2, 17, 5

LIS\(_{n+1}\) \(\propto \) LIS\(_n\)

Don't know how to do it!!!
To solve A

• Define B (Strengthen the inductive hypothesis)
• Reduce A to B
• Solve B using self-reduction

LIS and Modified LIS

• Input: Sequence of integers X: \(x_1, x_2, \ldots, x_n \)
• Output: Longest increasing subsequence

• Input: Sequence of integers X: \(x_1, x_2, \ldots, x_n \)
• Output: For each \(i:1 \ldots n \), a longest increasing subsequence of \(x_1, \ldots, x_i \) that ends in \(x_i \)

MLIS\((x_1, \ldots, x_n)\)

\[
MLIS(x_1, \ldots, x_n) = \\
1. \text{LIS of } x_1 \text{ that ends in } x_1 \\
2. \text{LIS of } x_1, x_2 \text{ that ends in } x_2 \\
\vdots \\
n-1. \text{LIS of } x_1, \ldots, x_{n-1} \text{ that ends in } x_{n-1} \\
n. \text{LIS of } x_1, \ldots, x_n \text{ that ends in } x_n
\]

Example

• 1, -3, 2, 10, 8, 23, -2, 17, 5

To solve A

• Define B
• Reduce A to B
• Solve B using self-reduction

LIS \(\preceq \) MLIS

\[X \xrightarrow{\text{Transform}} \text{Algorithm for MLIS} \xrightarrow{\text{Transform}} \text{MLIS}(?) \xrightarrow{\text{Transform}} \text{LIS}(X) \]
LIS ∝ MLIS

Algorithm for LIS

- Choose longest subsequence

Algorithm for MLIS

1. LIS of x_1 that ends in x_1
2. LIS of x_1, x_2 that ends in x_2
 ...
$n-1. \text{LIS of } x_1, \ldots, x_{n-1} \text{ that ends in } x_{n-1}$
$n. \text{LIS of } x_1, \ldots, x_n \text{ that ends in } x_n$

To solve A

- Define B
- Reduce A to B
- Solve B using self-reduction

MLIS Self-Reduction

MLIS(x_1, \ldots, x_n)

1. LIS of x_1 that ends in x_1
2. LIS of x_1, x_2 that ends in x_2
 ...
$n-1. \text{LIS of } x_1, \ldots, x_{n-1} \text{ that ends in } x_{n-1}$
$n. \text{LIS of } x_1, \ldots, x_n \text{ that ends in } x_n$

MLIS(x_1, \ldots, x_n)

1. LIS of x_1 that ends in x_1
2. LIS of x_1, x_2 that ends in x_2
 ...
$n-1. \text{LIS of } x_1, \ldots, x_{n-1} \text{ that ends in } x_{n-1}$
$n. \text{LIS of } x_1, \ldots, x_n \text{ that ends in } x_n$
Construct MLIS(x_1, \ldots, x_n)

$\text{MLIS}(x_1, \ldots, x_n) =$
1) $\text{MLIS}(x_1, \ldots, x_{n-1})$ plus
2) Choose longest $\text{LIS}(x_1, \ldots, x_j)$ ending in x_j ($j<n$) such that $x_j < x_n$. Append x_n.

LIS algorithm

- Is it correct?
- Is it efficient?

Recap: To solve A

- Define B
- Reduce A to B
- Solve B using self-reduction

Grocery Bags

How should we pack n items weighing w_1, w_2, \ldots, w_n ($w_i \leq W$) in two bags so as to minimize the difference in the weights of the bags?

Or even simpler: What is the smallest possible weight difference?

Self-Reduction

I don’t know how to make this work!

Self-Reduction

Strengthen the induction hypothesis
Problem B

- Input: Weights w_1, w_2, \ldots, w_n
- Output: A binary vector T:
 - $T[i] = 1$ if some subset of the weights sum to i
 - $T[i] = 0$ otherwise
 - for $i=0, \ldots, nW$

Transform

$\begin{align*}
T_0 & \quad T_1 & \quad T_2 & \quad T_3 & \quad \ldots & \quad T_{(n-1)W} \\
\downarrow & & & & & \\
T_{0} & \quad T_{1} & \quad T_{2} & \quad T_{3} & \quad \ldots & \quad T_{nW}
\end{align*}$

Self-Reduction: Problem B

What are the base cases?

Reduction: $A \propto B$

- Is it correct?
- Is it efficient?

Grocery Bag algorithm
Algorithm A

Use Algorithm B to compute $t[0]...t[nW]$
Let $S = \sum w_i$
(Note: $t[0..S]$ is symmetric about $S/2$)
Let j be the closest index to $S/2$ such that $t[j] = 1$
Return $|j - S/2|$

Grocery Bags

How should we pack n items weighing $w_1, w_2, ..., w_n$ ($w_i \leq W$) in two bags so as to minimize the difference in the weights of the bags?

Or even simpler: What is the smallest possible weight difference?