Outline

- Reductions to network flow
- Reductions between search and decision problems

Reductions to Network Flow Problem

- Bipartite Matching \propto Network Flow
- The Gee-ball Problem \propto Network Flow

Matching

- Let $G=(V,E)$ be a graph.

 - $E' \subseteq E$ is a matching if every vertex of V is incident to at most one edge of E'.

Matching Example

Bipartite Graph

- Let $G=(V,E)$ be a graph.

 - G is bipartite if V can be partitioned into V_1 and V_2 such that no pair of vertices in V_i $(i=1,2)$ have an edge.
Bipartite Example

G

G

CHECK

Bipartite Matching

• Input: Bipartite graph G
• Output: A largest matching of G

Bipartite Matching \propto Network Flow

Algorithm for Problem Bipartite Matching

Algorithm for Problem Network Flow

Bipartite Matching \propto Network Flow

• Transform Input – Step 1

Bipartite Matching \propto Network Flow

• Transform Input – Step 2

Bipartite Matching \propto Network Flow

• Transform Input – Step 2
Bipartite Matching \propto Network Flow

- Transform output

Reduction

- Is it correct?
- Is it efficient?

Integrality theorem

- If the capacities in a network are integral, then the max flow can be achieved with integral flows on each edge.
- Further the Ford-Fulkerson method yields an integral solution.

Proof of correctness

There is a 1-1 correspondence between 0/1 flows in the network and matchings in the input graph.

Reduction

- Is it correct?
- Is it efficient?

Reductions to Network Flow Problem

- Bipartite Matching \propto Network Flow
- The Gee-ball Problem \propto Network Flow
The Gee-ball Problem

- The southwestern conference of the gee-ball league consists of \(n+1 \) teams. Team \(n+1 \) is from HMC.
- We want to know whether it is possible for HMC to win more games this season than any other team in the conference.
- No ties allowed.

Example

- The teams are Pitzer, CMC, Pomona, and HMC
- Games won so far:
 - Pitzer 4, CMC 3, Pomona 2, HMC 2
- Games to play:
 - 1 game: Pitzer vs. HMC
 - 2 games: Pomona vs. HMC

The Gee-ball Problem

- Teams \(t_1, t_2, \ldots, t_n, t_{n+1} \)
- So far this year team \(i \) has won \(w_i \) games.
- Teams \(i \) and \(j \) will play each other \(g_{i,j} \) more times this season (\(g_{i,j} = g_{j,i} \)).

Gee-ball \(\propto \) Network Flow

Transform Input

1. Create a source \(s \).
2. Create vertex \(v_{i,j} \) for \(1 \leq i < j \leq n \).
3. Create edge from \(s \) to \(v_{i,j} \) with capacity \(g_{ij} \).
4. Create vertices \(u_i \) for \(1 \leq i \leq n \).
5. Create edge from \(v_{i,j} \) to \(u_i \) and \(u_j \) with infinite capacity.
5. Create a sink t.
6. Create edge from u_i to t with capacity W_i.

Let $W = \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} g_{n+1,i}$.

Transform Input

$V_{1,2}$

$V_{1,3}$

$V_{1,n}$

u_1

u_2

u_{n-1}

u_n

t

$W_{u_i,t}$

$W_{u_n,t}$

$W_{u_{n-1},t}$

$W_{u_2,t}$

$W_{u_1,t}$

$V_{t,1}$

$V_{t,2}$

$V_{t,n-1}$

$V_{t,n}$

$S_{1,1}$

$S_{1,2}$

$S_{1,n}$

$S_{1,t}$

$S_{2,1}$

$S_{2,2}$

$S_{2,n}$

$S_{2,t}$

$S_{n,1}$

$S_{n,2}$

$S_{n,n}$

$S_{n,t}$

Algorithm for Gee-ball

Algorithm for Network Flow

Input

transform

Output

Gee-ball \propto Network Flow

Transform Output

There is a way for HMC to win the season if and only if

Decision Problems

Decision problems are computational problems for which the output is "yes" or "no"

Search: Vertex Cover

• Input: Graph G
• Output: A smallest subset of vertices W such that every edge of G is incident to some vertex in W.
Decision: Vertex Cover

- **Input:** Graph G and integer K
- **Question:** Is there a subset W of K or fewer vertices of G such that every edge is incident to some vertex in W?

Polynomial Time Reductions

- Decision-VC \preceq_p Search-VC
- Search-VC \preceq_p Decision-VC

Independent Set

- **Input:** Graph G and integer K
- **Question:** Is there a subset W of K or more vertices of G such that no two vertices of W are adjacent?
- **Does Search-IS \preceq_p Decision-IS?**

3-Colorability

- **Input:** Graph G
- **Question:** Can the vertices of G be colored with Red, Green, and Blue so that no adjacent vertices have the same color?
- **Does Search-3Col \preceq_p Decision-3Col?**