Algorithm Design Techniques

- Induction (or Self-Reduction)
- Reduction
- Divide and Conquer (special case of Self-Reduction)
- **Greedy**

Greedy Paradigm

Get what you can NOW!

But sometimes it’s better to look around!

But sometimes it isn’t …

I hate gas stations!

- I’m driving cross country and my route is fixed.
- My map tells me exactly where every gas station along the route is located.
- I want to minimize the number of times I stop for gas…
- … without running out!
Greedy

- First stop
 - I’ll stop at the farthest gas station I can get to without running out.
- Then repeat

Greedy is Optimal!

- Can the optimal make a first stop that is later?

Minimum Spanning Tree

- Input: Weighted graph G
- Output: Minimum weight spanning tree of G

Weighted Graph

- G=(V,E) is a connected, weighted graph with n vertices and m edges.

Spanning Tree

- A spanning tree of G is a connected, acyclic subgraph with vertex set V.

Weight of Spanning Tree

- The weight of spanning tree of G is the sum of the weights of its edges.
Minimum Spanning Tree

- A minimum spanning tree of G is one with smallest possible weight.
- Find an MST of the following graph:

Prim’s Algorithm

Choose a vertex \(w \in V \)
\(F = \{ w \} \)
While \(V - F \neq \emptyset \)
Let \(e \) be a minimum weight edge that emerges from \(F \)
\(F = F + \{ e \} \)

Prim’s example

Start with red vertex
Prim’s Algorithm

- Is it correct?
- Is it efficient?

Cut

- A cut is a partition of the vertices of G into two sets (R,B).
- An edge e crosses the cut if it has an endpoint in each set of the cut.
- Which edges cross the (R,B) cut?
Cut Theorem

• Let \((R, B)\) be a cut of graph \(G\) and let \(e\) be a minimum weight edge crossing the cut.
• Then \(e\) is in some minimum spanning tree of \(T\).
• If \(e\) is the least weight edge spanning the cut then it is in every minimum spanning tree of \(T\).

Tree Facts

• A tree on \(n\) nodes has \(n-1\) edges.

Tree Facts

• If \(e\) is an edge of \(T\) then \(T\{-e\}\) is a forest consisting of two trees.

Tree Facts

• If \(e\) is an edge of \(G\) but not of \(T\) then \(T\{+e\}\) contains exactly one cycle.

Tree Facts

1. A tree on \(n\) nodes has \(n-1\) edges.
2. If \(e\) is an edge of \(T\) then \(T\{-e\}\) is a forest consisting of two trees.
3. If \(e\) is an edge of \(G\) but not of \(T\) then \(T\{e\}\) contains exactly one cycle.

Proof: Cut Theorem

• Let \((R, B)\) be a cut of graph \(G\) and let \(e\) be a minimum weight edge crossing the cut.
• Let \(T\) be a minimum spanning tree of \(G\).
• If \(e\) is in \(T\) we are done so suppose not.
• Consider the graph \(T\{e\}\).
Proof: Cut Theorem

- Consider the graph $T+\{e\}$.
 - By our tree facts this graph has exactly one cycle and the cycle includes e.
 - Removing any edge of the cycle yields a spanning tree of G.
 - If the cycle contains an edge e' such that $w(e') \geq w(e)$ then $T+\{e\}-\{e'\}$ is a spanning tree with weight no more than T.

Consider the cut (R,B)

- Since e spans the cut at least one other edge of the cycle must also span the cut.
- Why?
- So what?

Prim’s Algorithm

- Is it correct?
 - If the edge weights are unique then it follows immediately from the cut theorem.
 - What if the edge weights are not unique?
- Is it efficient?

Prim’s Algorithm

Choose a vertex $w \in V$

$F=\{w\}$

While $V-F \neq \emptyset$

Let e be a minimum weight edge that emerges from F

$F=F+\{e\}$

Running Time: $O(n(\cdot))$

Choose a vertex $w \in V$

$F=\{w\}$

While $V-F \neq \emptyset$

Let e be a minimum weight edge that emerges from F

$F=F+\{e\}$

Consider naïve approach …

- Go through edge list to find least weight edge emerging from F: $6,13,7,3,5,8,11,2,10,9,12,4$
Prim’s Algorithm
Running Time: $O(nm)$

Choose a vertex $w \in V$
$F = \{w\}$
While $V-F \neq \emptyset$

Let e be a minimum weight edge that emerges from F
$F = F + \{e\}$

Naïve approach $O(m)$

What to do?

Fringe vertex

v is a fringe vertex if it is in $V-F$ and it is connected by an edge to a vertex u in F

A less naïve approach …

List of fringe vertices and for each its minimum weight edge to F

$[b, 2], [d, 3], [a, 5], [c, 10]$

And even better…

• Keep the fringe vertices in a heap

Prim’s Algorithm
A Better Implementation

Choose a vertex $x \in V$
$F = \{x\}, H = \emptyset$
For each $e = (u, x)$: Add record $[u, e]$ to heap H keyed on $w(e)$
While $H \neq \emptyset$

$[u, e] = \text{Find-min}(H)$
Add u and e to F
For each edge incident to u: Update heap
Update heap: [b,2],[d,3],[a,5],[c,10]

• [b,2]: remove [b,2] from heap [d,3],[a,5],[c,10]
• Add new fringe vertices: [d,3],[a,5],[c,10],[e,12]
• Update edge weights: [d,3],[a,5],[c,9],[e,12]

Are these standard operations?

• Extract-min
• Add element to heap
• Reduce key of element in heap ??!

Decrease key

• Next homework assignment: Design decrease key algorithm for heaps that runs in time O(lg(n)).

Prim’s Algorithm

Choose a vertex x ε V
F={x}, H=Ø
For each e=(u,x): Insert
While H ≠ Ø
[u,e]= Extract-min (H)
Add u and e to F
For each edge incident to u: Insert or Decrease-key or do nothing

Prim’s Algorithm Running Time

• Heap operations across algorithm:
 – n Extract-mins O(lg(n)) each
 – n Inserts O(lg(n)) each
 – m-n Decrease-keys O(lg(n)) each
 – m Do nothings O(1) each
• Total time is O(m lg(n))

But wait ... suppose we could decrease-key in time O(1)

• Heap operations across algorithm:
 – n Extract-mins O(lg(n)) each
 – n Inserts O(lg(n)) each
 – m-n Decrease-keys O(1) each
 – m Do nothings O(1) each
• Then total time is O(m + n lg(n))
Bravo, bravo …

Do It With Fibonacci Heaps

Huh?

Don’t worry – it works!

Kruskal’s (Greedy) Algorithm

Let e_1, e_2, \ldots, e_m be the edges of G sorted by increasing weight.

$F = V$ (F is a forest of isolated vertices)

For $i = 1$ to m

If $F + \{e_i\}$ is acyclic then $F = F + \{e_i\}$.

Return(F)

Kruskal’s Algorithm

- Order the edge weights. (In this graph the weights are unique.)

- $1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13$

Kruskal’s Algorithm-cont.

- $1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13$

Kruskal’s Algorithm-cont.

- $1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13$
Kruskal’s Algorithm-cont.

- 1,2,3,4,5,6,7,8,9,10,11,12,13

Can we add the edge with weight 7?

Can we add the edge with weight 8?
Kruskal’s Algorithm-cont.

MST of G with cost $___$

Kruskal’s Algorithm

• Does it work in general?
• Prove it.

Kruskal’s Algorithm

Claim:
At each stage of the algorithm F is a subgraph of some MST of G.

Proof of Correctness

Let e_1, e_2, \ldots, e_m be the edges of G sorted by increasing weight.

$F = V$ \hspace{1cm} (a forest of isolated vertices)

Claim is true here

For $i = 1$ to m

If $F + \{e_i\}$ is acyclic then $F = F + \{e_i\}$.

Return(F)

Loop Invariant

Let e_1, e_2, \ldots, e_m be the edges of G sorted by increasing weight.

$F = V$ \hspace{1cm} (a forest of isolated vertices)

Claim is true here

If Claim is true here

For $i = 1$ to m

If $F + \{e_i\}$ is acyclic then $F = F + \{e_i\}$.

Return(F)

Kruskal’s Algorithm

Loop Invariant:

F is a subgraph of some MST of G.

Proof

Consider the k^{th} execution of the loop. Let T be a MST of G containing F. What can happen during the loop?

1. e_k is not added to F
2. e_k is added to F
Kruskal’s Algorithm
Proof of Correctness

Loop Invariant:
F is a subgraph of some MST of G.

Proof
1. e_k is not added to F
 In this case F does not change so the claim holds when
 execution of loop concludes

What do we know?
Assume $e_k = (u,v)$. The vertices u and v are in
separate connected components. Let S be the
vertices of F_u.

Using our tree facts
• The graph $T + \{e_k\}$ contains exactly one cycle.
• This cycle contains e_k and at least one additional
 edge e that spans $(S, V-S)$.
• $T + \{e_k\} - \{e\}$ is an MST of G.

Moreover
• $T + \{e_k\} - \{e\}$ is an MST of G that contains the
 edges of $F + \{e_k\}$.
Running Time

• We’ll save that for later…