Algorithm Design Techniques
- Induction (Self-Reduction)
 - Divide and Conquer
 - Dynamic Programming

Outline
- Longest Common Subsequence
 - Inductive Approach
 - Dynamic Programming
 - Backtracking
- Matrix Chain Multiplication

Longest Common Subsequence
- Input: Two sequences (lists) of integers
 \(X = x_1, x_2, \ldots, x_j \) and \(Y = y_1, y_2, \ldots, y_m \)
- Output: A longest subsequence of \(X \) that is also a subsequence of \(Y \)

LCS - Example
- Input: \(X = 1, -2, 3, 4, 9, 18 \)
 \(Y = 3, 9, 1, -2, 5, -2, 22, 18 \)
- Output: \(Z = 1, -2, 18 \)

\(\text{LCS}_{n+1} \) Algorithm
Finds LCS of sequences with \(n+1 \) or fewer elements (total)
Easy cases: X or Y is empty

- LCS(Φ, Y[1…m]) =
- LCS(X[1…j], Φ) =

Harder case (Assume j>0, m>0)

\[X = x_1, x_2, \ldots, x_j, x_j \]
\[Y = y_1, y_2, \ldots, y_m \]

1. \(x_i = y_m \)
2. \(x_i \neq y_m \)

Run Time

\[T(j,m) = \max(T(j-1,m) + T(j,m-1)), T(m-1,n-1)) + c \]
\[\geq 2T(j-1,m-1) + c \]
\[= \Omega(2^{\min(j,m)}) \]

Run Time Analysis

Many duplicated subtrees

Dynamic Programming

Don’t Recalculate

- \(A(i,k) \) is the length of a longest common subsequence of \(X[1…i] \) and \(Y[1…k] \)
- \(A(i,0) = A(0,k) = 0 \) for \(0 \leq i \leq j \) and \(0 \leq k \leq m \)
- \(A(i,k) = \max \) of \(A(i-1,k), A(i,k-1), \) and \(A(i-1,k-1) + \text{match}(x_i, y_k) \)
- \(A(j,m) \) is the length of a longest common subsequence of \(X \) and \(Y \)
LCS - Algorithm

LCS(X=x_1,x_2,…,x_j;Y=y_1,y_2,…,y_m)
For i=0 to j: A(i,0)=0
For i=0 to m: A(0,i)=0
For i=1 to j
 For k=1 to m
 If x_i=y_k then match=1 else match=0
 A(i,k) =max(A(i -1,k),A(i,k -1),A(i-1,k-1)+match))
Return A(j,m)

Run Time Analysis

- Number of table entries:
- Time to compute one entry:
- Run time:

Outline

- Longest Common Subsequence
 - Inductive Approach
 - Dynamic Programming
 - Backtracking
- Matrix Chain Multiplication
Matrix Chain Multiplication

- A is an $n \times m$ matrix
- B is an $m \times k$ matrix
- How many scalar multiplications are needed to compute AB?

Matrix Chain Multiplication

- A is a 2×5 matrix
- B is a 5×1000 matrix
- C is a 1000×2 matrix.
- How many scalar multiplications are needed to compute ABC?
 - $(AB)C$
 - $A(BC)$

Matrix Chain Multiplication

- Input: A list of $n+1$ integers $p_1, p_2, \ldots, p_{n+1}$
- Output: The minimum number of scalar multiplications needed to compute $\prod_{i=1}^{n} A_i$ where A_i is a $p_i \times p_{i+1}$ matrix.

(Multiply matrices in an optimal way)

Inductive Approach

- Consider an input: $p_1, p_2, p_3, p_4, p_5, p_6$
- Imagine an optimal solution: 10773
Inductive Approach

• There is some last multiplication
 \((A_1(A_2A_3)) \| (A_4A_5)\)

• So \(OPT(A_1, A_2, A_3, A_4, A_5) = OPT(A_1, A_2, A_3) + OPT(A_4, A_5) + p_1 p_4 p_5\)

Inductive Approach cont.

• There is some last multiplication
 \((A_1(A_2A_3)) \| (A_4A_5)\)

Running Time

• \(T(n) = \sum_{0<k<n} T(k) + T(n-k) + c \geq 2T(n-1) + c\)
 \(= \Omega(2^n)\)

Dynamic Programming

• Use a table to store results
• What kind of results?
 – \(M(k,j)\) = Minimum number of multiplications to compute \(\Pi_{k \ldots j} A_i\)

\[
\begin{array}{c|ccccc}
 & 1 & 2 & 3 & 4 & 5 \\
\hline
1 & & & & & \\
2 & & & & & \\
3 & & & & & \\
4 & & & & & \\
5 & & & & & \\
\end{array}
\]

\(M(3,5)\) needs: \(M(3,3), M(4,5), M(3,4), M(5,5)\)
M(k,j) needs M(i,m) where m-i < j-k

Dynamic Programming Algorithm

\[
M(k,k)=0 \\
\text{For } j,k \text{ such that } j-k = 1, 2, ..., n-1 \\
\qquad M(k,j) = \min_{i=k}^{j-1} M(k,i) + M(i+1,j) + p_k p_i p_j \\
\text{Return } M(1,n)
\]

Input: 2,3,1,5,4,8

MCM Algorithm

- Recursive Algorithm takes exponential time.
- Dynamic Programming takes ________.