Algorithm Design Techniques

- Induction (Self-Reduction)
 - Divide and Conquer
 - Dynamic Programming continued

Outline

- Hum-Soc reading problem
- String edit problem
- Neat printing problem

Hum-Soc reading

- You are assigned books b_1, \ldots, b_n to read in K days (typically $K < n$)
 - The books have to be read in order
 - You must finish any book you start on the same day
 - Book b_i has p_i pages
- Objective: minimize the maximum number of pages you need to read in any day

Hum-soc reading

Definition:

Let $M(i,j)$ denote the maximum number of pages you have to read in any day in an optimal solution to the problem of reading books b_1, \ldots, b_i in j days

Base Case: $j=1, i=0 \ldots n$

$M(i,1)=\sum_{m=1}^{i} p_m$

Inductive Step: $j=2 \ldots k, i=0 \ldots n$

$M(i,j)=\min_{m=0 \ldots i} \max(M(m,j-1), \Sigma_{j=m+1}^{i} p_j)$
Hum-soc reading

- Analysis
 - Compute M(i,j) for i=0...n, j=1...K
 - Each computation can be done in O(n)
 - Overall running time is O(n*K)

String Edit

- Input: Strings X=x_1x_2...x_n and Y=y_1y_2...y_n
- Output: Edit distance between X and Y
- Edit operations are insert/delete, match and substitute. Insert/deletes cost c_1 and substitutes cost c_2. Matches are free.
- Edit distance is the minimum cost of edits needed to transform X into Y.

String Edit

- Let D(i,j) denote the edit distance between x_1...x_i and y_1...y_j

Analysis:
D(i,j) takes constant time to compute given D(i-1,j), D(i,j-1) and D(i-1,j-1).
D(i,j) is computed for i=0...n, j=0...m.
The running time is O(nm)

String Edit

- Base case: D(i,j) where i=0 or j=0
 - D(0,j) = c_j
 - D(i,0) = c_i
- Inductive step: D(i,j) where i>0 and j>0
 - If x_i=y_j:
 D(i,j) = min(c_1 + D(i-1,j), c_1 + D(i,j-1), D(i-1,j-1))
 - Else:
 D(i,j) = min(c_1 + D(i-1,j), c_2 + D(i,j-1), c_2 + D(i-1,j-1))

Neat Printing

- We want to print words w_1,...,w_n
- Word w_i is c_i characters long
- Adjacent words on a line must be separated by a blank
- M characters (including blanks) can be written on a line
- No hyphenation is allowed
- We want to minimize the sum of the squares of the trailing blanks on the printed lines.
Neat Printing

• Definition 1:
 – For \(j > i \) let \(B(i, j) \) denote the number of trailing blanks when words \(w_i \) through \(w_j \) are printed on a single line provided the words fit on a single line. If the words don’t fit then \(B(i, j) = \infty \).
 – Note: if \(B(i, j) \) is finite then \(j - i + 1 \leq M/2 \), which is constant.
 – We can compute \(B(i, j) \) for \(i, j \) such that \(j - i + 1 \leq M/2 \) in \(O(n) \) time.

• Definition 2:
 – Let \(C(i) \) denote the minimum cost of printing words \(w_1 \ldots w_i \).

• Base Case: \(i = 0 \)
 – \(C(0) = 0 \)

• Inductive Step: \(i > 0 \)
 – \(C(i) = \min_{j, j > 0, j \geq i - M/2} (C(j) + B(j+1, i)) \)

• Analysis:
 – \(C(i) \) takes \(O(1) \) time to compute given \(B(i, j) \) for \(j - i + 1 \leq M/2 \)
 – We need to compute \(C(i) \) for \(i = 0, \ldots, n \)
 – The running time is \(O(n) \)