The world as we know it …

All computational problems

Solvable

Unsolvable

Unsolvable

Solvable

Intractable ↔ \Omega(n^c) for every c

Tractable ↔ \mathcal{O}(n^c) for some c

Why polynomial?

- Someone said so…
- It makes a lot of sense…

The world as we know it …

P

(Tractable Problems)

Intractable Problems

Unsolvable Problems
What’s in P?

Every decision problem that has a polynomial-time algorithm: e.g.
– Is the list S of integers sorted in ascending order?
– Is the graph G connected?
– Does graph G have a MST with cost K or less?
– Does tree T have a vertex cover of size K or less?

What about Search problems?

• We’ll come back to that.

What is not in P?

• Recognizing true statements in Presburger arithmetic
• The circularity problem for attribute grammars
• Inequivalence for regular expressions with squaring
• And others

Huh?

The world of solvable problems…

| Known to be tractable | Don’t know | Known to be intractable |

The world of solvable problems…as it seems

| Don’t know |
NP: all tractable + some don’t know

Is P=NP?

About NP

What is NP?

Formal Language Theory

Some classes of languages

- P is in NP
- Some of NP is in don’t know
- NP as a class has some nice properties
- NP is the smallest class containing some don’t knows that has these properties

- NP is the class of decision problems that have polynomial-time verifiable proofs.
- HUH?

- A language over an alphabet Σ is a subset of Σ^*
- Examples for $\Sigma=\{0,1\}$
 - $\{01,0101,010101,\ldots\}$
 - $\{0, 11, 110, 1001, \ldots\}$
 - \emptyset
 - Σ^*

- Regular
- Context-free
- Recursive
- Recursive-enumerable
Language classes

• Language classes are typically defined by the computational power needed to answer membership queries:

 Is x in L?

Some classes of languages

• Regular – Finite Automata
• Context-free – Pushdown Automata
• Recursive – Turing machine
• Recursive-enumerable – Turing machines can answer yes but not necessarily no.

Turing machine

• A simple model of a computer:
 – Finite state machine
 – R/W tape
 – Can be programmed to follow simple rules

Church-Turing thesis

• Any physically-realizable computing device can be modeled with at most polynomial-time blowup by a randomized Turing machine.

Note

• Church-Turing thesis may be disproved by quantum computers if they are found to be
 – Physically realizable
 – Provably more powerful than traditional Turing machines

More classes

• Membership questions can be answered by resource-bounded Turing machines
 – Limit time
 – Limit space
 – Limit randomness
P
• Membership questions can be answered by resource-bounded Turing machines
 – Limit time – polynomial
 – Limit space
 – Limit randomness – none

More classes
• Membership questions can be answered by resource-bounded non-deterministic Turing machines
 – Limit time
 – Limit space
 – Limit randomness

NP
• Membership questions can be answered by resource-bounded non-deterministic Turing machines
 – Limit time - polynomial
 – Limit space
 – Limit randomness - none

Decision Problems
• Computational problems in which the output is Yes or No.
• Decision problems can be posed as membership queries.

Vertex Cover
Input space: \(G,k \)
Yes instances
(G,k) such that \(G \) has a vertex cover of size \(k \)
No instances
(G,k) such that \(G \) does not have a vertex cover of size \(k \)

Vertex Cover
Input space: valid encodings
Yes instances
x: such that \(x \) encodes a yes-instance of V.C.
No instances
x: such that \(x \) encodes a no-instance of V.C.
Language over \{0,1\}^*

<table>
<thead>
<tr>
<th>Yes instances</th>
<th>Invalid encodings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x) such that (x) encodes a yes-instance of (V.C)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x) such that (x) encodes a no-instance of (V.C)</td>
</tr>
</tbody>
</table>

Encoding Rule

- It is easy to determine whether or not a binary string is a valid encoding.
- A problem of size \(n \) can be encoded in \(\text{poly}(n) \) bits.
- Notion of tractability is preserved.

Our outlook

- Natural problems
 - Ignore coding issue unless it matters
- Decision version
 - What about search?
- Objective to distinguish tractable from intractable

Shopping Bag Problem

\(n \) items of weight at most \(B \)

- Natural problems
 - Ignore coding issue unless it matters
- Coding clarifies what we mean by “input size”
Shopping Bag Problem
n items of weight at most B

• Natural problems
 • Input size is n \(\lg(B) \) bits
• Objective: An \(O(nB) \) algorithm does not prove tractability

Our outlook

• Decision version
 – What about search?
 • If the decision problem is intractable then the search problem is intractable. Why?

Our outlook

• Decision version
 – What about search?
 • If the decision problem is intractable then the search problem is intractable. Why?
 • Typically, if the decision problem is tractable then so is the search problem. Why?

The world as it seems…

The world as we believe it to be…
NP

• Languages that can be posed as
 \{ x \mid \exists y \text{ such that } P(x,y) \}

 where \(P(x,y) \) is checkable in time \(\text{poly}(|x|) \)

Example

• VC:
 – \(x=(G,k) \)
 – \(y \) is a vertex cover of \(G \) containing \(k \) or fewer vertices

• 3-coloring:
 – \(x=G \)
 – \(y \) is a function mapping \(V \) to \{red, blue, green\}

NP: Other characterizations

• Languages decidable in polynomial-time by a non-deterministic Turing machine
• Languages that have probabilistically checkable proofs using a constant number of queries and logarithmic randomness

The world as we believe it to be…

\[
\begin{array}{c}
\text{NP} \\
\text{P: Tractable} \\
\text{Intractable}
\end{array}
\]

But what could be…

\[
\begin{array}{c}
P=\text{NP: Tractable} \\
\text{Intractable}
\end{array}
\]
The world as we believe it to be…

NP-complete

- If A is NP and B is NP-complete then $A \preceq_p B$
- If any NP-complete problem is tractable then every NP problem is tractable.

NP

- Is it in NP?
 - Is it also in P?
 - Is it NP-Complete?
 - Else?

NP-Completeness Map

Legend

- VC \preceq_p DS:
 1. If VC is NP-hard then so is DS.
 2. If DS can be solved efficiently then so can VC.
Clique \leftrightarrow Independent Set

For $G = (V, E)$ the complement of G is $G^c = (V, V \times V - E)$.

\[T_{\text{clique}} (n,m) = n^2 + T_{\text{ind-set}}(n,n^2-m) \]

Reduction is $\text{poly}(n,m)$.