Computer Graphics
Z Sweedyk
Lecture 8

Graphics Pipeline 5

1. Build Primitives (Model Coordinates)
2. Assemble Scene (World Coordinates)
3. Project into 2D (Projection Coordinates)
4. Normalize (Normalized Coordinates)
5. Scan Convert with Hidden Surface Removal

Now for clipping

Overview
- Vertex clipping
- Line clipping
- Polygon clipping

Vertex Clipping:
Is P in (or on)?
P is in iff it is in wrt each plane of the frustum
Vertex Clipping:
Is \(P \) in wrt a plane of the frustum?

\[P \text{ is in iff } n \cdot v \geq 0 \]

\(n \) is the inward facing normal.
\(v \) is a vector from some point on the plane to \(P \).

What is an inward facing normal?

Line (Segment) Clipping:
Is \(L \) in, out, or both?

If both return \(L' \)

Line Clipping

- Slow test
- Speed up

Clipping a line segment against a plane of the frustum
Clipping a line segment against a plane of the frustum

Case: $p_0 \& p_1$ go on with next test

Clipping a line segment against a plane of the frustum

Case: $p_0 \& p_1$ out then L is out

Clipping a line segment against a plane of the frustum

Case: p_0 in $\& p_1$ out _____
Case: p_0 out $\& p_1$ in _____

Replace out with intersection point

Equation of a Plane

This plane is the set of points (x,y,z) where $ax + by + cz=d$

$\mathbf{n}=\langle a,b,c \rangle$

$\mathbf{d}=ax_0+by_0+cz_0$, where (x_0,y_0,z_0) is any point on the plane.

Speed up

- Assign an "out-code" to the endpoints, p_0 and p_1, of L.
- The out-code for p_i is $b_0b_1b_2b_3b_4b_5$
 - b_j is 1 if p_i is out wrt plane j
 - 0 otherwise

Speed Up Test

- L is "definitely out" if the bitwise AND of the out-codes is non-zero.
- L is "definitely in" if the bitwise OR of the out-codes is zero.
- Else let j be a bit set to 1 in the OR of the outcodes. Clip to plane j. Compute the out-code for the new endpoint.
- Restart Test
Polygon Clipping

- If v_0 is in then write v_0
- For $i=1...n-1$
 - If v_i in and v_{i+1} in then write v_{i+1}
 - If v_i out and v_{i+1} out then do nothing
 - If v_i in and v_{i+1} out then write intersection point
 - If v_i out and v_{i+1} in then write intersection point and v_{i+1}

Speed Up

- Use line clipping speed up.