States and Transitions

What is a “State”?

- A state is an abstraction of all relevant aspects of a situation at a given point in time, or in a given position in a sequence.

What is a “Transition”?

- A transition represents the change in state between two successive points in time, or between two successive positions in a sequence.

Why is this Important?

- Many computational models are expressible using the ideas of states and transitions.
- So are many aspects of problem solving, game playing, etc.

States of a Program in Execution

- A program in execution can be represented by transitions from one state to the next.
- A state consists of:
 - For each variable in the program:
 - the current value of that variable
 - The position of the “instruction pointer” in the program.
- We already demonstrated this in the discussion of McCarthy’s transformation.

States and Transition of a Game

Black to move

White to move
States and Transition of a Puzzle

States and Transitions as a Directed Graph
- Nodes = States
- Arcs = Transitions
- Show all possible moves, not just a single sequence
- Usually not constructed explicitly
 - too big

Partial Construction
- Start from an initial state
- Construct “tree” of possibilities
- e.g. Chess:

Not Necessarily a Tree
- Fan-in is possible
- Moves can be “commutative”:
 - \(a \cdot b = ba\)
- Completely different ways to achieve same net effect:
 - \(a \cdot b \cdot c \cdot d \cdot e \cdot f \cdot g = h \cdot i\)

Towers of Hanoi Puzzle

Physical setup

Complete graph for 2-disks
Towers of Hanoi Combinatorics

- Adding one more disk triples the number of states:
 - For each state of an n-disk system, the n+1th can be placed at the bottom of any of the 3 stacks.
 - Therefore 3^n states for n-disk system.

Why is the puzzle “hard”?

Ways to Solve Puzzles

- Algorithmic
- Search
- Heuristic search

Shortest Solution to Puzzle

- Assuming search:
 - Breadth-first
 - Iterative deepening
 - Successive depth-first searches with a depth cutoff

Breadth-First Search Revisited

- Déjà vu:
 - Chapter 4 (graph searching)
 - Lecture notes (4th set of slides)
 - Mid-term, problem 2

View as a “Wavefront”
What Data Structure?

- Use a Queue for Breadth-First

Finding your Way

- Have states remember their predecessors (e.g., using references).

Termination

- To ensure termination, must remember states already seen and refuse to enqueue them.

Structures for Loop Detection

- Simple linked list
- Possibly an extension of your queue
- Hashtable
- Array of linked lists
- Much faster

State Representation

- State representation does not have to be literal.
- Any structure that is sufficient to capture all relevant information will do.
- Often there are many choices.
- The choice may impact search efficiency.

Example of State Representation Choices: Towers of Hanoi

- Mapping from disk to spindle number:
 - (a 2) (b 2) (c 1)
- List of disks on each spindle, smallest first:
 - (c) (a b) ()
- Solving using rex, for example, the second would probably be more efficient:
 - All manipulation takes place at the tops of the stacks
Example of State Representation Choices: Traffic Jam

- The fact that we already have a representation influences.
- Probably best not to replicate entire grid structure as state:
 - Heavyweight states
- I used array of offsets for states:
 - Each offset indicates motion of a car from the original state.

Example of State Representation Choices: Traffic Jam

- States = arrays of offsets:
 - initial state = [0, 0, 0, 0, 0] understood: [red, blue, cyan, green, magenta] by position
 - immediate transitions to:
 - [0, 0, 1, 0, 0] (move cyan right)
 - [0, 0, -1, 0, 0] (move cyan left)
 - [0, 1, 0, 0, 0] (move blue down)
 - [0, 0, 0, 0, 1] (move magenta down)
 - [0, 0, 0, 0, -1] (move magenta up)
 - From each array, and the initial grid, we can construct the resulting grid.

States in Computing Machines

- Broad split:
 - Finite-state systems
 - Finite-state machines (chapter 12)
 - Finite-state systems with a very large number of states (most computers)
 - Infinite-state systems:
 - Turing machines
 - Most programming languages
 - Other structured automata

Turing Machines

- A very primitive model of computing
 - Conceptually simple to construct
- A very powerful model of computing
 - Any conceptually computable function can be computed by some Turing machine.

Alan M. Turing

- Celebrated mathematician/computer scientist, 1912-1954
- Code-breaking machine (play: "Breaking the Code")
- Reaction-diffusion equations
- Proving programs correct
- Artificial Intelligence
- Theory of computability

Turing Machine Depiction

- infinitely-extendable tape (blank cells)
- read/write head
- control state (one of a finite set)

Control is determined by a finite set of rules (each a 5-tuple):
- (current-control-state, current-read-symbol, next-control-state, write-symbol, head-motion)
with the last three components being functions of the first two.
tm program on turing

- /cs/cs60/bin/tm
- Examples in: /cs/cs60/tm/*.
- Sample execution:

```
Example: /cs/cs60/tm/add1.tm

Sample execution:
turing > tm add1.tm
1 0 1 1 1 1 1
1 1 0 0 0 0 0

Rule set add1.tm

- (current-control-state, current-read-symbol, next-control-state, write-symbol, head-motion)
- Example:

  ```
 start: __ __ left add1
 add1: 0 1 right end
 add1: _ 1 right end
 end: 0 0 right end
 end: 1 1 right end
  ```

  * Assumes that head is to the right of the non-blank symbols on the tape.*

Other Examples

- Complete binary adder: see add.tm
- Busy Beaver n: (How many 1's using only n rules).
- TM simulating TM

Turing's Thesis

- Any computable function is computable by some Turing machine.
- Generally accepted.
- Cannot be proved.

Implications

- The set of all computable functions can be enumerated (there is a "countable" number of them).
- There are non-computable functions.
- There are problems of interest that are unsolvable.
Non-Proof of Turing's Thesis

- Proving Turing's thesis formally would require formalizing the notion of computability.
  - This is what Turing set out to do.
  - But that formalization could be argued and to prove or disprove it would require a proof that that formalization completely captured the notion of computability.
  - We'd then be in a position similar to proving Turing's thesis.

Disproving Turing's Thesis

- Conceptually this is possible:
  - Find a function that everyone agrees is computable.
  - Prove that no TM can compute it.
  - However, it is highly unlikely.
- All attempts to characterize computability have been shown to be equivalent to the TM.

An Unsolvable Problem

- Consider any reasonably rich programming language (such as rex or Java).
- Any computable function can be computed in such a language (given sufficient memory).
- Each program in the language is a finite string of symbols.
- We can enumerate the set of syntactically-correct programs.

An Unsolvable Problem

- Enumerate the programs: P₀, P₁, P₂, ...
- The possible inputs to those programs are just strings of characters. They can be enumerated too: I₀, I₁, I₂, ...
- A reasonable question to ask is:
  - Does a program P halt on input I, or not?
  - This question is "undecidable".

Undecidability

- "Undecidable" means there is no algorithm (i.e. program) that can compute the answer.
- General question:
  - Does Pᵢ halt on Iᵢ?
- This is a "2-input" question Pᵢ(Iᵢ).

Undecidability

- "2-input" question: Does Pᵢ(Iᵢ) halt?
- Let's simplify this to a 1-input question:
  - Does Pᵢ(Pᵢ) halt?
  - where the argument means the source code of Pᵢ.
- If we can solve the 2-input question, we can solve the one input one, by just copying Pᵢ for both the program and the input of the original.
- We could then also solve this related problem:
  - Does Pᵢ(Pᵢ) diverge? (diverge = not halt)
Undecidability

- Does $P_i(P_i)$ diverge?
- Suppose this were decidable.
- Then there would be a program $P_k$ which computes the answer for any input $P_i$.
- But then we have a slight conundrum:
  - $P_k(P_i)$ gives an answer indicating whether $P_k(P_k)$ diverges.
  - We’d be forced to conclude that $P_k(P_k)$ does not diverge; if it diverged, we’d have a contradiction.

To really prove the point, we need a slight modification of the function to be computed: With input $P_i$:
- Return “yes” if $P_i(P_i)$ diverges.
- Intentionally diverge if $P_i(P_i)$ does not diverge.
- If the original function were computable, so would this one be.
- Now suppose that this function is computable by a program $P_k$.

The "Halting Problem" is Undecidable

- Now we have an unavoidable contradiction:
  - $P_k(P_k)$ returns “yes” if $P_k(P_k)$ diverges.
  - $P_k(P_k)$ diverges if $P_k(P_k)$ does not diverge.
- We are forced to conclude that the original function, determining whether a program halts on an arbitrary input, is not computable after all.

Esoteric Problems?

- The halting problem, despite its practical attractiveness, may seem far removed from your computing experiences.
- However, many other "every day" problems can be shown to be non-computable.
- This is done by showing that within those problems lies the power to simulate a Turing machine.
- With such power comes inherent limitations.

Post's Correspondence Problem

- Is there an algorithm that will accept any finite collection of pairs of strings $[x_1, y_1] [x_2, y_2] ... [x_n, y_n]$ and determine whether there is a "correspondence" $x_1 x_2 x_3 ... x_n = y_1 y_2 y_3 ... y_n$ (pairs are allowed to be used multiple times in achieving a correspondence)?
- Example: $[a, aaa], [abaab, ab], [ab, b]$
- Correspondence: $abaab a a b = ab aaa aaa b$

An Abstract Generalization

- Rice’s Theorem:
  Any non-trivial property of computable functions is undecidable on the set of representations of those functions.
- (Non-trivial means not uniformly true or false for all functions.)
- This theorem arises in the study of "Recursion Theory" or "Theory of Computation".