Anonymous Functions and Problem Decomposition

Review

• In the last class you saw several rex predicates
 - Functions returning true or false (1 or 0)
 - Examples: null, even, is_prime, member, ...

• You also saw several higher-order functions
 - Functions that take functions as arguments, or return functions as results.
 - Examples: map, map, reduce, keep, drop, all, some

iterate

• Keeps applying a function to an argument as many times as is necessary until it fails to satisfy a given predicate.
 - The call iterate(action, continue, state)
 looks at the sequence state, action(state),
 action(action(state)), ... and returns the first of
 these values which does not satisfy the continue predicate.

 \[
 \begin{align*}
 \text{successor}(n) &= n+1; \\
 \text{next_highest_composite}(n) &= \\
 \text{iterate}(\text{successor, is_prime, n+1});
 \end{align*}
 \]

Anonymous Functions

• Functions have a meaning independent of the names we give them.
• We want a way to refer to a function without giving it a name.
• Notation:
 \[(X) \Rightarrow \ldots \text{some expression} \ldots\]
 means “the function that, with argument \(X\),
 returns the value of \(\ldots\text{some expression} \ldots\)
Example

• The function is_zero, defined by:

\[
\text{is}_\text{zero}(X) = (X == 0);
\]

can also be written anonymously:

\[
(X) \Rightarrow (X == 0)
\]

"the function that, with argument X,
returns the value of \(X == 0 \)."

• So we could define

\[
\text{drop}_\text{zeros}(L) = \text{drop}(\text{is}_\text{zero}, L)
\]

if is_zero has been previously defined, and otherwise

\[
\text{drop}_\text{zeros}(L) = \text{drop}(X \Rightarrow (X == 0), L)
\]

Precedent

• This notation for talking about a function goes back to (at least) Bourbaki, where the symbol

\[
\mapsto
\]

was used instead of

\[
\Rightarrow
\]

• Church used the idea extensively, but with a different symbol \(\lambda \) as a prefix.

More Anonymous Functions

\[
(X) \Rightarrow X+5 \quad \text{The function that adds 5}
\]

\[
(X) \Rightarrow X\times5 \quad \text{The function that multiplies by 5}
\]

\[
(X) \Rightarrow X\times X \quad \text{The function that squares}
\]

\[
(X, Y) \Rightarrow Y/X \quad \text{The function that divides its second argument by its first.}
\]

Anonymous Functions with “Imported” Values

\[
\text{drop}_\text{multiples}(X, L) = \\
\text{drop}((Y) \Rightarrow (Y \% X == 0), L)
\]

The predicate that tests divisibility by \(X \).

• The book refers to \(X \) as being imported by the anonymous function

- It is used by, but not an argument to, the anonymous function.
Exercises

• Give an equation defining scale using map

• Define pairWith, such that pairWith(X, L) creates a list in which each element of L is paired with X:
 pairWith(3, [1,2,3]) ==> [[3,1], [3,2], [3,3]]

Exercises

• Define a function pairs that given two list returns their Cartesian product:
 List of all pairs of an element from the first list with an element of the second list:
 pairs([1, 2, 3], [4, 5, 6]) ==>
 [[1, 4], [1, 5], [1, 6], [2, 4], [2, 5],
 [2, 6], [3, 4], [3, 5], [3, 6]]

Function Decomposition

• To solve problems using functions, we typically:
 - Express the problem informally as a function, with input and output.
 - Break down the function as a composition of simpler functions.
 - Repeat this process, until we are using only functions that are built-in.

Decomposition Example

• Problem: Given a graph determine whether it contains a cycle or not.
Key Observation 1

- If a finite graph is acyclic, it must have a leaf
 - That is, a node with no outgoing edges.
- Why?

![Graph](image1.png)

Key Observation 2

- If we remove a leaf and any attached arcs from a graph, it can't change it from cyclic to noncyclic or vice-versa.

![Graph](image2.png)

Key Observation 2

- If we remove a leaf and any attached arcs from a graph, it can't change it from cyclic to noncyclic or vice-versa. Why?

![Graph](image3.png)

So...

- How could we solve the problem using these two key ideas?