Turing Machines and Undecidability
October 29, 2001

Turing Machine Depiction
- infinitely-extendable tape (defaults to blank cells)
- \(q\) (control state, one of a finite set)
- read/write head
- (finite alphabet) \(0 1\)
- Control state (one of a finite set)

Control is determined by a finite set of rules (each a 5-tuple):
For a given state and read symbol, determines the symbol to write, the next state, and the direction to move.

Execution Trace

<table>
<thead>
<tr>
<th>Current</th>
<th>Read</th>
<th>Write</th>
<th>Move</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>_</td>
<td>_</td>
<td>left</td>
<td>add1</td>
</tr>
<tr>
<td>add1</td>
<td>0</td>
<td>1</td>
<td>right</td>
<td>end</td>
</tr>
<tr>
<td>add1</td>
<td>_</td>
<td>1</td>
<td>right</td>
<td>end</td>
</tr>
<tr>
<td>add1</td>
<td>1</td>
<td>0</td>
<td>left</td>
<td>add1</td>
</tr>
<tr>
<td>add1</td>
<td>_</td>
<td>1</td>
<td>right</td>
<td>end</td>
</tr>
<tr>
<td>end</td>
<td>0</td>
<td>0</td>
<td>right</td>
<td>end</td>
</tr>
<tr>
<td>end</td>
<td>1</td>
<td>1</td>
<td>right</td>
<td>end</td>
</tr>
</tbody>
</table>

Assumes that head starts to the right of the non-blank symbols on the tape.
Other Examples

• See /cs/cs60/tm/*.tm
 – E.g., complete binary adder
 – See add.tm and add.doc

• Can go on to implement more complex operations
 – Multiplication, comparisons
 – Composition of operations
 – Looping, counters...
 – In fact, can implement any function that C, Java, or rex can compute!
 • Turing machines are a lot more painful to program, though.

Universal Turing Machines

• Any specific Turing machine has a finite description (why?).
 – So, we can put this description on the tape of another Turing machine.

• There exists a Universal Turing Machine
 – Starting with the tape containing a description of any machine T and an input, can simulate the computation of T on that input.
 – I.e., an interpreter for Turing machines.
 – By Church’s Thesis, this machine can compute any intuitively computable function.

Church’s Thesis

• a.k.a. Turing’s thesis, Church-Turing thesis, ...

• Every intuitively computable function is computable by some Turing machine

• Generally accepted, but cannot be proved.

Implications of Church’s Thesis

• There are non-computable functions
 – e.g., functions mapping natural numbers to the natural numbers which no algorithm can compute
 – Why?

• Remaining question: are there interesting problems that are unsolvable?
Non-Proof of Church’s Thesis

• Idea:
 – Formalize the notion of computability
 – Show that a Turing machine can compute every computable function.

• Why doesn't this approach fly?

Disproving Church’s Thesis

• Conceptually this is possible:
 – Find a function that everyone agrees is computable.
 – Prove that no TM can compute it.

• However, every attempt so far to characterize computability is equivalent to the TM.
 – Lambda calculus, partial recursive functions, phrase-structure grammars, register machines, ...

Extensions of Church's Thesis

• For a while, some further conjectured that every realistic model of computation could be "efficiently" simulated by a Turing Machine.

• Some evidence this is not true, though no proof
 – Randomized algorithms
 – Quantum algorithms

An Unsolvable Problem

• Consider any reasonably rich programming language (such as rex or Java).
• Any computable function can be computed in such a language (given sufficient memory).
• Each program in the language is a finite string of symbols.

• Thus, we can enumerate the set of syntactically-correct programs.
An Unsolvable Problem

- Enumerate the programs: \(P_0, P_1, P_2, \ldots \)
- The possible inputs to those programs can be described as finite strings of bits. They can be enumerated too: \(I_0, I_1, I_2, \ldots \)
- A reasonable question to ask is: Does a program \(P \) halt on input \(I \), or not?

- This question is **undecidable**
 - No algorithm exists for computing the answer!

Undecidability

- “2-input” question: Does \(P_i(I_j) \) halt?
- Let’s simplify this to a 1-input question: Does \(P_i(P_i) \) halt?
 - Seems weird, but programs act on program code all the time (interpreters, compilers, editors, ...)
 - At least as easy to solve as the 2-input question
 - Equivalent to answering the question: Does \(P_i(P_i) \) diverge?
 (where diverge = not halt)

Does \(P_i(P_i) \) diverge?

- Suppose this were decidable.
 - Then there would be a program \(P_k \) which computes the answer for **any** input \(P_i \)
- Given this program \(P_k \), we can construct a variant \(P_m \)
 - Given an input \(P_i \), return “yes” if \(P_i(P_i) \) diverges and intentionally diverge if \(P_i(P_i) \) halts.
 - This is computable if halting/divergence were computable

What does \(P_m(P_m) \) do?
Esoteric Problems?

- The halting problem, despite its practical attractiveness, may seem far removed from your computing experiences.
- However, many other “every day” problems can be shown to be non-computable.
- This is done by showing that within those problems lies the power to simulate a Turing machine.
- With such power comes inherent limitations.

Post’s Correspondence Problem

- Is there an algorithm that will accept any finite collection of pairs of strings \([x_1, y_1] \ [x_2, y_2] \ldots \ [x_n, y_n]\) and determine whether there is a “correspondence”
 \(x_1 x_2 x_3 \ldots x_n == y_1 y_2 y_3 \ldots y_n\)
 (pairs are allowed to be used multiple times in achieving a correspondence)?
- Example: \([a, aaa], [abaaa, ab], [ab, b]\)
 Correspondence: abaaa a a b == ab aaa aaa b

An Abstract Generalization

- **Rice’s Theorem:**
 Any non-trivial property of computable functions is undecidable on the set of representations of those functions.
 - Non-trivial means not uniformly true or false for all functions.
 - This theorem arises in the study of “Recursion Theory” or “Theory of Computation”.

Other Undecidable Problems

- There are any number of “natural” programming languages for which typechecking is undecidable.
- Also, all sorts of questions that a compiler cares about are undecidable:
 - Will this line of code ever be executed?
 - Will these two variables ever refer to the same object in memory?
 - Is this the smallest possible compiler output?