Inductive Definitions

- Inductive definitions are the main “constructive” way to define infinite sets.
- We will need infinite sets in much of what follows.

Example: Binary Trees

- is a binary tree.
- If T_1 and T_2 are binary trees, then so is:
 \[\bullet \]
 \[T_1 \quad T_2 \]
- Extremal clause: The only binary trees are those constructible by a finite number of applications of the above rules.
Examples of Binary Trees

Example: Natural Numbers ω

- **Basis:** 0 is in ω.
- **Induction:** If n is in ω, so is the successor of n (variously denoted n', $S(n)$, or $n+1$).
- **Extremal:** The only elements in ω are those derivable by applications of the above rules.
- Examples: 0, 0', 0'', 0''', 0''''', ... are all elements of ω.

Notes

- ω is an infinite set.
- ω does *not* contain infinity (∞) as an element.
 - Why?
- ω's members are all finite.

Decimal Numerals

- We can agree by convention that
 - 1 stands for 0',
 - 2 stands for 0'',
 - ...
 - 9 stands for 0'''''''''.
 - Beyond that, give an algorithm for generating additional numerals:
 - 10, 11, 12, 13, ...
1-adic Numerals

- The only digit is 1.
- The empty string (denoted \(\lambda \) so it is readable) stands for 0.
- 1X (1 followed by X) stands for \(X' \).
- The numerals are: \(\lambda, 1, 11, 111, 1111, 11111, \ldots \)

- Could also use lists: [], [1], [1, 1], [1, 1, 1], ...

2-adic Numerals

- The digits are 1 and 2.
- The empty string (denoted \(\lambda \) so it is visible) stands for zero.
- The numerals are: \(\lambda, 1, 2, 11, 12, 21, 22, 111, 112, \ldots \)
- Unlike binary numerals, there is no redundancy (1, 01, 001, 0001, ... all mean the same thing in binary).

Roman Numerals

- The digits are I, V, X, L, C, D, M.
- There is no string for 0.
- You know the rest.

Numerals vs. Numbers

- Numbers are abstract.
- Numerals are a concrete representation.
 - There's a reason why we don't call them "Roman numbers"
Strings over an alphabet

• An alphabet is a set of arbitrary symbols.
• The set of all finite strings over an alphabet Σ is denoted Σ^*.
• Example:

 $\{a, b\}^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, aba, \ldots\}$

Formal definition:

• Basis: λ is in Σ^*.
• Inductive rule: If $x \in \Sigma^*$ and $\sigma \in \Sigma$, then $x\sigma$ (x followed by σ) is in Σ^*.
• Extremal clause.

Languages

• A language over Σ^* is any subset of Σ^*.
 • A very general definition!

• Examples, where $\Sigma = \{a, b\}$
 • $\{a, b\}^*$ itself
 • $\{\}$ the empty language
 • $\{ba, baba\}$ maybe your first language
 • $\{\lambda, aa, aaaa, aaaaaa, \ldots\}$ the language of an even number of a’s.

More Languages

• Still with $\Sigma = \{a, b\}$:
 • $\{\lambda, ab, ba, aabb, abab, baab, bbbaa, aaabbb, aababb, \ldots\}$ the language in which the number of a’s equals the number of b’s.
 • $\{a, b, aa, bb, aab, aba, baa, abb, bab, bba, \ldots\}$ the language in which the number of a’s is not equal to the number of b’s.
 • $\{\lambda, ab, aab, aabbb, ababab, abababab, \ldots\}$ a slightly less obvious language.
Languages

• There are lots of languages, some very weird.

• To be of computational interest, a language needs to be defined **inductively**.

• Given a language, need a way of telling whether a given string is in the language or not (called *parsing* the string).

Non-Trivial Language Defined Inductively

• \(L = \{ \lambda, \text{ab, abab, aabb, aababb, ...} \} \)

• Basis: \(\lambda \) is in \(L \).

• Inductive rules:
 - If \(x \) is in \(L \), so is \(axb \).
 - If \(x_1 \) and \(x_2 \) are in \(L \), so is \(x_1x_2 \).

Grammars: A Shorthand

• Spelling everything out with these inductive definitions is laborious.

• We need a shorthand, especially for more complex languages.

Grammatical Definition

• Pick a symbol \(S \) *not* in the alphabet of interest.

• \(\rightarrow \) is a symbol meaning “can be rewritten as”.

• Specify a collection of *grammar rules*:

 \[
 S \rightarrow \text{ab} \\
 S \rightarrow aSb \\
 S \rightarrow SS
 \]

• Starting with \(S \), what strings can we generated by replacing left-sides with right-sides of rules?

 - A sequence of such replacements is called a *derivation*.
 - Defines a language: the strings we can generate which *don’t* contain \(S \).
Using the Grammar Rules

- Given the grammar:
 \[
 S \rightarrow ab \\
 S \rightarrow aSb \\
 S \rightarrow SS
 \]
- Example derivations of strings in the language:
 \[
 S \Rightarrow ab \\
 S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabbbb \\
 S \Rightarrow SS \Rightarrow SS \\Rightarrow abab \\
 S \Rightarrow SS \Rightarrow aSbS \Rightarrow aabbSb \Rightarrow aabbaabb
 \]

More General Grammars

- Instead of just S, allow multiple symbols, (called nonterminals) none of which are in the alphabet of the language.
 - The symbols in the alphabet of the language are called terminals.
 - Pick one to be the *start symbol*.

Additive Arithmetic Expressions

- The start symbol is A.
- The terminals are \{a, b, c, +\}.
- The productions are:
 \[
 A \rightarrow V \\
 A \rightarrow V + A \\
 V \rightarrow a \\
 V \rightarrow b \\
 V \rightarrow c
 \]

Phase-Structure Grammars

- In a phase-structure grammar, rules can have arbitrary left-hand and right-hand sides involving terminals and nonterminals:
 \[
 S \rightarrow abc \\
 S \rightarrow aSQ \\
 bQc \rightarrow bccc \\
 cQ \rightarrow Qc
 \]
- Arbitrary grammars are too hard to work with
- In CS you're likely to see only context-free grammars
 - Left-hand side is always a nonterminal
Example Derivations

- The productions were:
 \(A \rightarrow V \)
 \(V \rightarrow a \)
 \(V \rightarrow b \)
 \(V \rightarrow c \)

- Sample derivations:
 \(A \Rightarrow V \Rightarrow a \)
 \(A \Rightarrow V \Rightarrow c \)
 \(A \Rightarrow V + A \Rightarrow c + A \Rightarrow c + V \Rightarrow c + a \)
 \(A \Rightarrow V + A \Rightarrow c + V + A \Rightarrow c + b + A \Rightarrow c + b + V \Rightarrow c + b + a \)

Shorthands on top of Shorthands

- The productions were:
 \(V \rightarrow a \)
 \(V \rightarrow b \)
 \(V \rightarrow c \)

- Group by common left-hand sides
 \(A \rightarrow V | V + A \)

- Use \(| \) (read “or”) to represent alternatives:
 \(A \rightarrow V | V + A \)
 \(V \rightarrow a | b | c \)

- Notes:
 - The symbol \(| \) “binds more loosely” than other symbols.
 - Same grammar, just a briefer notation.
 - Sometimes other separators are used for right-hand-sides

Derivation Tree Visualization

- Logics in red
- Auxiliaries in blue
- Arrows indicate that a production is being applied

Terminal string = red “fringe” of tree = “c + a + b”

Abstract Syntax Tree (≠ Derivation Tree)
Shows Implied Meaning of String

- Arrows indicate that a production is being applied
- Terminals in red
- Auxiliaries in blue

Derivation Tree

Syntax Tree