Logic Expression Simplification

- Often it is possible to simplify function expressions from, say, their minterm form.

- This may be done by using various identities, as we know. But more systematic methods will be shown.

Simplification Example

“3-argument majority function”

Minterm form:

<table>
<thead>
<tr>
<th>v</th>
<th>w</th>
<th>x</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Notice Certain “Adjacencies”

3-argument majority function

\[
\text{majority}(v, w, x) = wx + vw'x + vw'x'
\]

These rows are “adjacent”: their variable combinations differ in only 1 bit.
Any other Adjacencies?
(ok to use a row more than once)

<table>
<thead>
<tr>
<th>v</th>
<th>w</th>
<th>x</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Unsimplified Majority

\[
\text{majority}(v, w, x) = v'wx + vw'x + vwx' + vwx
\]

Simplified Majority

\[
\text{majority}(v, w, x) = wx + vx + vw
\]

Comparison

- Unsimplified:
 - 4 and-gates, 3 inputs each, some with negation,
 - 1 4-input or-gate
- Simplified:
 - 3 and-gates, 2 inputs each, none with negation,
 - 1 3-input or-gate
Implications for Simplified Functions

- If communicated by human, easier to understand, transfer
- If implemented as hardware, fewer gates, wires
- If implemented as software, fewer tests, execution steps

Visualizing Adjacencies

- Hypercube representation of truth table
- Karnaugh map representation

Hypercubes (connected vertices = adjacent)

1-dimension = 1 logical variable

2-dimensions = 2 logical variables

3-dimensions = 3 logical variables
Plotting Functions on Hypercubes

majority(v, w, x) = v'wx + vw'x + vw'x' + vwx

each minterm is a vertex

Simplified Functions on Hypercubes

majority(v, w, x) = wx + vx + vw

each term is a sub-cube

Which sets are subcubes?

SOP Circuits

- An SOP will always correspond to a set of sub-cubes
 - Collectively the vertices in the sub-cubes cover the “on” vertices.
 - The vertices in the sub-cubes don’t cover any “off” vertices.
- Such a set is called a cover for the function.
- Each cover corresponds to a different gate implementation.
Simplified Covers

- In a fully-simplified SOP, each sub-cube will be *maximal*
 - That is, not contained within another sub-cube.
 - If it is properly contained in another sub-cube, then it could be replaced with that sub-cube.
 - The replacement would have fewer variables, and hence be simpler.

- Making a sub-cube as large as possible, makes the corresponding term as small as possible.

Maximality

This set of 2 sub-cubes covers the function.

However, one of the sub-cubes is not maximal. Why?

Einstein’s Principle:

Explanations should be made as simple as possible, but no simpler.

Including x by itself will not work!

Non-Uniqueness of Simplest Cover
4-D Hypercube (Tesseract)

Alternate Representation

Plotting a Function on a 4-D Hypercube

Maximal Covering
Hypercube Function-Plotting Applet

An applet conceived by R. Keller and implemented by Ian Weiner, HMC '01 as a CS60 project.

http://www.cs.hmc.edu/~keller/javaExamples/hypercube

Sample inputs:
- x*y+y*z
- q*a+q'*b*c

Check out dimensions > 4.

Karnaugh Maps

- Invented by Maurice Karnaugh, 1953, at Bell Labs
- A way to visualize hypercubes of up to 4 (and stretching to 5 or 6) dimensions
- Approach by “flattening” a hypercube
- A structured form of Venn Diagram

“3-D” Karnaugh Map

These connections are usually implicit.

Covering on a Karnaugh Map
"Subcubes" are now rectangles whose sides are powers of 2.

Wraparound is permitted!

Try this one

Implied connections on 4-D Karnaugh Map
Simplification with “Don’t Care” Combinations

- For certain problems, certain combinations (truth-table rows) never arise in actual operation.
- These are called “don’t care” combinations.
- Because their input combinations never occur, the function value can be either 0 or 1. This means we can elect which value to use at our discretion.
 - i.e., cover or not cover in the Karnaugh map, as convenient
- Usually we elect whichever value achieves the best simplification of the result.

Example: mod 3 adder

<table>
<thead>
<tr>
<th>vy</th>
<th>00</th>
<th>01</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>xy</td>
<td>00</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>10</td>
<td>1 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Only 9 of 16 combinations actually occur, leaving 7 don't care ones.
The don't cares are the same for both functions.
Plot Function on a K-Map

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>xy</td>
<td>01</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

○ = don't care

Simplified expression:

The other half.

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>xy</td>
<td>01</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

○ = don't care

Simplified expression: