Predicate Logic

Predicate logic, also called first-order logic, or FOPC, is motivated by the recognition that it is difficult to formulate interesting statements in propositional logic.

The problem is that propositional logic does not have any way to distinguish between individuals and properties as the object of study. A model is just a set of truth values.

You might represent the assertion that “Sam is a man” by the variable sm, and that “Bill is a man” by bm. But by compressing the identity of the individual and the property of the individual into one symbol, it is difficult to discern (and impossible to use in a proof) that we are talking about a shared property, and to deduce, for example, that both Sam and Bill are mortal.

In predicate logic we distinguish between the property (called the predicate) and the individual, writing expressions such as $man(bill)$ and $man(sam)$. We also distinguish between constants such as $bill$ which refer to a particular individual, and variables, like x which range over all individuals.
The Syntax of First-Order Logic

As with propositional logic, we will fix an unambiguous notation:

Definitions: Fix the following disjoint, countably infinite sets of *non-logical* symbols:

1. $\mathcal{A} = \{a, b, c, \ldots\}$, the set of *constant symbols*
2. $\mathcal{F} = \{f, g, h, \ldots\}$, the set of *function symbols*
3. $\mathcal{P} = \{p, q, r, \ldots\} \cup \{\equiv\}$, the set of *predicate symbols*

as well as two total functions $\text{arity}_\mathcal{F} : \mathcal{F} \longrightarrow \mathbb{N}_+$ and $\text{arity}_\mathcal{P} : \mathcal{P} \longrightarrow \mathbb{N}$ determining the *arity* of each function and predicate symbol.

We will call $\mathcal{L} = \mathcal{A} \cup \mathcal{F} \cup \mathcal{P}$ the set of non-logical symbols of the language.
The Syntax of First-Order Logic

Further, fix the following sets of logical symbols:

1. $\mathcal{X} = \{x, y, z, \ldots\}$, the (countably infinite) set of variables
2. $Conn = \{\land, \lor, \Rightarrow, \Leftarrow, \neg, \equiv\}$ the set of connectives.
3. $Const = \{\top, \bot\}$ the set of logical constants.
4. $Quant = \{\forall, \exists\}$
5. $Aux = \{\},\{\} \}$ the set of auxiliary symbols.

The first-order language over \mathcal{L} has as its alphabet the set

$$\Sigma = \mathcal{L} \cup \mathcal{X} \cup Conn \cup Const \cup Quant \cup Aux$$
The Syntax of First-Order Logic

Definition: The set $TERMS$ of first-order terms is the smallest set of strings from Σ^* such that:

1. For every $x \in \mathcal{X}$, $x \in TERMS$.
2. For every $c \in \mathcal{A}$, $c \in TERMS$.
3. For every $f \in \mathcal{F}$, if $arity_{\mathcal{F}}(f) = n$ and $t_1, \ldots, t_n \in TERMS$, then $f(t_1, \ldots, t_n) \in TERMS$.

Assuming $a, b \in \mathcal{A}$, $x, y \in \mathcal{X}$, $f, g \in \mathcal{F}$, $arity_{\mathcal{F}}(f) = 1$, and $arity_{\mathcal{F}}(g) = 2$, then the following are examples of well-formed terms:

- a
- $f(a)$
- $g(x, y)$
- $g(f(a), g(x, f(g(f(b), y))))$
The Syntax of First-Order Logic

Definition: The set ATOMS of first-order atomic formulas is the smallest set of strings from Σ^* such that:

1. $\bot \in \text{ATOMS}$, and $\top \in \text{ATOMS}$.

2. For every $p \in \mathcal{P}$, if $\text{arity}_\mathcal{P}(p) = n$ and $t_1, \ldots, t_n \in \text{TERMS}$, then $p(t_1, \ldots, t_n) \in \text{ATOMS}$.

Assuming $a, b \in \mathcal{A}$, $x, y \in \mathcal{X}$, $f, g \in \mathcal{F}$, $\text{arity}_\mathcal{F}(f) = 1$, $\text{arity}_\mathcal{F}(g) = 2$, $\text{arity}_\mathcal{P}(p) = 1$, and $\text{arity}_\mathcal{P}(q) = 2$ then the following are examples of well-formed terms:

- $p(a)$
- $p(f(a))$
- $q(g(x, y), f(a))$
- $q(f(a), g(f(a), g(x, f(g(f(b), y)))))$

Note that predicates cannot occur among the arguments to a predicate. While the string $g(f(a), y) \in \text{TERMS}$, the string $q(p(a), y) \not\in \text{ATOMS}$.
Definition: Given \mathcal{L} and its extension Σ as defined above, and the sets $TERMS$ and $ATOMS$ as defined above, the first-order language of formulas over \mathcal{L} (abbreviated $FORM$), also called the set of well-formed-formulas (or WFF’s) of the language, is the smallest subset of Σ^* such that:

1. For all $A \in ATOM$, $A \in FORM$.

2. If $\Phi \in FORM$ then $(\neg \Phi) \in FORM$.

3. If $\Phi, \Psi \in FORM$, and $\bullet \in \{\land, \lor, \rightarrow, \leftarrow, \equiv\}$, then $(\Phi \bullet \Psi) \in FORM$

4. if $\Phi \in FORM$ and $x \in \mathcal{X}$ then $\forall x(\Phi) \in FORM$ and $\exists x(\Phi) \in FORM$

For all $A \in ATOMS$, the formulas $A, (\neg A) \in FORM$, are called literals.
Informal Semantics of First-Order Logic

In propositional logic semantics came in the simple form of a mapping (valuation) of propositional letters to truth values. The semantics of first-order formulas are naturally more complex, since the goal is to reason about more complex structures.

Informally:

- Constants stand in for individuals. So, we might have the constant *sam* that corresponds to some person named Sam.

- Function symbols stand in for functions that map from one or more constants to other constants. So, \(\text{son}(\text{sam}) \) would assume that we interpret the function symbol \(\text{son} \) as the mapping that takes us from a person to their son. Having applied \(\text{son} \) to \(\text{sam} \) we are now, in the compound expression, talking about another person.
Informal Semantics of First-Order Logic

- Predicate symbols stand for truth-valued functions, that correspond to whether the arguments they are applied to have some property (i.e., belong to some relation). Thus we might assume that \textit{serialKiller} corresponds to the property of being an deranged homicidal maniac, and thus \textit{serialKiller}($\text{son}($sam$)$) has the value true. We could imagine other predicates, such as \textit{alias} that holds on a pair of constants if the police has found that the two people are the same, so that \textit{alias}($\text{son}($sam$)$, davidBerkowitz$)$ is true.