This assignment consists of 4 problems, each of which requires defining two or more functions. All solutions should be placed into a single file named `assign1.sml`, which should contain no syntax or type errors. (If you know the code does not work, explain why in a comment; code that does not even compile should be commented out.) Functions should have the exact names and types given in the problem below, and should be labeled with comments specifying the corresponding problem number. Feel free to define any other functions you find useful, however.

The submission process should be familiar; when you are ready, run the command

```
  cs131submit assign1.sml
```

This assignment uses material covered in class, which appears in more detail in Chapters 1–3, 5, and 7–9 of the course textbook. DO NOT USE `ref` OR `:=` IN YOUR SOLUTIONS!

1 Defining Functions

1. Define the function

   ```
   fib : int -> int
   ```

 which computes the Fibonacci number F_n when given $n \geq 0$. The Fibonacci numbers are defined by:

 $F_0 = 0$

 $F_1 = 1$

 $F_n = F_{n-1} + F_{n-2}$ when $n \geq 2$.

 Your code need not be efficient; the most obvious definition turns out to take time exponential in n. You need not check for negative inputs.

2. It is occasionally useful to consider a more general specification:

 $F_0 = 0$

 $F_1 = 1$

 $F_n = F_{n-1} + F_{n-2}$ for all integers n.

 This uniquely determines the value of F_n for all integer n, not just the non-negative integers. (For example, what must F_{-1} be to satisfy this specification? What does this mean for F_{-2}?) Define the function

   ```
   intfib : int -> int
   ```

 that computes the value of F_n given an arbitrary integer n. Again, this need not be efficient.
2 Lists and Polymorphism

1. Define the function

\[\text{split : 'a list -> 'a list * 'a list} \]

to separate the list elements in odd positions (that is, the first, third, fifth, etc.) from those in even
positions (that is, the second, fourth, etc.). More formally, we want \(\text{split \{x_1,x_2,\ldots\} \) to return the
pair \((x_1,x_3,\ldots)\), \((x_2,x_4,\ldots)\)). Your function should work for both inputs of even length and
inputs of odd length (as well as for the empty list, in which case the output should be a pair of empty
lists).

2. Define the function

\[\text{intmerge : int list * int list -> int list} \]

which takes two sorted lists of integers (where the elements are in non-decreasing order), and merges
the elements into a single sorted list. You will need at least one type annotation in your definition to
tell the compiler that the inputs are lists of integers.

3. Define the function

\[\text{merge : ('a * 'a -> bool) -> ('a list * 'a list) -> 'a list} \]

which takes an order relation and a pair of lists (which can be assumed to be increasing with respect to
to the given order) and merges the two lists into a single list, also in increasing order. For example, if
\(\text{merge} \) is applied to the \(\leq \) operation on integers you should get back a function with the same behavior
as \(\text{intmerge} \).

4. The mergesort algorithm works by splitting the input into half, sorting each half recursively, and then
merging the results. Use the \(\text{split} \) and \(\text{merge} \) functions to define the function

\[\text{mergesort: ('a * 'a -> bool) -> 'a list -> 'a list} \]

which, given an ordering relation, sorts its input list. (Be careful to include the right base cases for
the recursion.) Then, for example, we can define a sorting routine for lists of integers:

\[\text{val intmergesort : int list -> int list = mergesort (op <)} \]

(The type annotation here is necessary for the compiler because \(< \) is overloaded to work on integers,
characters, etc., and there would otherwise not be enough context here to determine which was meant.)

3 Higher-Order Functions

There are two ways to define a two-argument function; the arguments can either be supplied simultaneously
(as a pair) or can be supplied separately through successive applications. For example, a function having
two integer inputs could be written to have either the type

\[\text{int * int -> int} \]

or written slightly differently to have the type

\[\text{int -> int -> int} \]

In different circumstances, one or the other type may be more convenient. But a function defined in either
fashion may be converted to the other.

Define the functions
curry : ('a * 'b -> 'c) -> 'a -> 'b -> 'c
uncurry : ('a -> 'b -> 'c) -> ('a * 'b -> 'c)

to do the conversion. That is, curry f should be the function g where (g x) y = f(x, y), and uncurry g
which be the function f such that (g x) y = f(x, y).

Note that because of the parenthesization conventions the type of curry is equivalent to the type:

(('a * 'b) -> 'c) -> ('a -> ('b -> 'c))

and the type of uncurry is equivalent to the type

('a -> ('b -> 'c)) -> (('a * 'b) -> 'c).

4 Datatypes

Consider the following datatype for representing arithmetic expressions.

datatype opn = Add | Sub | Mult | Divide
datatype aexp = Num of real
| Opn of aexp * opn * aexp

Then 3.0 + (9.0 / 2.5) is represented as

Opn(Num 3.0, Add, Opn(Num 9.0, Divide, Num 2.5))

Certain HP calculators and certain programming languages evaluate expressions using a stack; here an
arithmetic computation is expressed as a sequence of operations, which will be represented with the following
datatype:

datatype sopn = Push of real
| DoOpn of opn
| Swap

The operation Push r means push the number r onto the stack; the operations DoOpn Add, DoOpn Sub,
DoOpn Mult, and DoOpn Divide mean to replace the top two numbers on their stack with their sum, differ-
ence, etc.; the Swap operation swaps the top two numbers on the stack:

| If the stack looks like: | and the operation is: | afterwards the stack should be:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>Push r</td>
<td>r ...</td>
</tr>
<tr>
<td>a b ...</td>
<td>DoOpn Add</td>
<td>(b + a) ...</td>
</tr>
<tr>
<td>a b ...</td>
<td>DoOpn Sub</td>
<td>(b - a) ...</td>
</tr>
<tr>
<td>a b ...</td>
<td>DoOpn Mult</td>
<td>(b * a) ...</td>
</tr>
<tr>
<td>a b ...</td>
<td>DoOpn Divide</td>
<td>(b/a) ...</td>
</tr>
<tr>
<td>a b ...</td>
<td>Swap</td>
<td>b a ...</td>
</tr>
</tbody>
</table>

(Note: the top of the stack is shown on the left.)

1. We will represent the stack as a list

type stack = real list

with the front of the list corresponding to the top of the stack.

Write a recursive function

evalRPN : sopn list * stack -> real
which returns the number at the top of the stack after performing the given operations in order, starting
with the given stack. Be careful to get the order right for Sub and Divide:

\[\text{evalRPN ([Push 2.0, Push 1.0, DoOpn Sub], [1])} \]

should return 1.0, not -1.0.

At this point in the course you need not worry about stack underflow, numeric overflow, or divide-by-
zero. Correct code may therefore generate non-exhaustive match warnings.

2. Write a function

\[\text{toRPN : aexp -> sopn list} \]

which converts an arithmetic expression to a list of stack operation instructions which compute the
same expression. There should be an DoOpn Add stack operation for every Add in the input, and so on;
evaluating the input expression to a number \(r \) and then returning [Push \(r \)] is not acceptable.
Hint: this corresponds exactly to a postfix traversal of the input expression viewed as a tree.

3. The same expression can be computed several ways in the stack machine, because for each subexpression
you can choose to evaluate the left side first or the right side first. (Because subtraction and division
are not commutative, evaluating the right side first and then the left will require a Swap to fix things
up.)
For example, \(1.0 - (2.0 + 3.0) \) can be computed either by the sequence

\[\text{[Push 1.0, Push 2.0, Push 3.0, DoOpn Add, DoOpn Sub]} \]

or by

\[\text{[Push 2.0, Push 3.0, DoOpn Add, Push 1.0, Swap, DoOpn Sub]} \]

Note that the first set of instructions requires that the stack be able to hold at least three numbers
simultaneously, while the second sequence never requires more than two numbers on the stack at any
one time.
Define the function

\[\text{toRPNopt : aexp -> sopn list \times int} \]

which returns a pair containing (1) an optimal sequence of operations to evaluate the given arithmetic
expression, and (2) the maximum number of values simultaneously on the stack during the execution
of this sequence. Optimal here is defined to mean having the least possible maximum number of values
on the stack at any given time. (In other words, you are trying to minimize the maximum stack depth
during evaluation.)
Hints: (1) This function can be computed inductively, using the optimal instruction sequence for the
first operand, the optimal sequence for the second operand, and the stack sizes they each require. (2)
you can decide whether to evaluate the left side first or the right side first just by looking at the stack
depth each requires (and without looking at the particular operations).

4. Extra Credit (15%) Write the function

\[\text{fromRPN : sopn list \to aexp} \]

that converts a list of stack operations to the corresponding arithmetic expression. You may assume
that evaluation of these stack operations starting with an empty stack would yield a stack containing
only a single number, the answer. (That is, that the stack operations really do correspond to some
arithmetic expression.)