Dataflow Analysis

February 28, 2001
CS 132: Compiler Design

Control Flow

- Definition: The *control flow* of a program is the possible sequences of instructions or blocks that a program may execute
 - Obviously undecidable to compute perfectly
 - Generally we ignore all expressions and just look at the graph structure of the program
 - Nodes are instructions or basic blocks
 - Each edge represents a syntactically possible flow of control. (E.g., every CJUMP has two successors)
- Control-flow analysis involves finding this graph and looking for various properties (e.g., identifying loops)

Data Flow

- The purpose of *dataflow analysis* is to analyze how code uses its values.
 - Connecting computations to where they’re used
 - What values are available at a given point?
 - Where did they come from?
 - What variables might be referred to later?

- NB: Once you have indirect jumps (such as higher-order functions) control flow becomes dependent upon data flow.

Reaching Definitions

- Question:
 - For each use of a variable, which assignments in the program could have set the value being used?
- Setup:
 - Give each assignment/definition in the program a unique label.
 - Answers are then sets of these labels.
Reaching Definitions

- For each temporary \(t \), define \(\text{defs}(t) \) to be the set of all assignments/definitions for the temporary \(t \).
 - Ambiguous vs. unambiguous definitions
- For each instruction \(s \), define \(\text{gen}(s) \) to be the set of definitions generated by this instruction.
 - Singleton set if \(s \) is a definition
 - Empty set otherwise
- For each instruction \(s \), define \(\text{kill}(s) \) to be the set of all definitions not in force after this statement.
 - \(\text{defs}(t) \setminus \{d\} \) if is the definition \(d \) to the temporary \(t \).
 - Empty set otherwise

Reaching Definitions Example

1. \(a \leftarrow 5 \)
2. \(c \leftarrow 1 \)
3. L1: if \(c > a \) goto L2
4. \(c \leftarrow c + c \)
5. goto L1
6. L2: \(a \leftarrow c - a \)
7. \(c \leftarrow 0 \)

\[\begin{array}{lll}
\text{GEN} & \text{KILL} \\
1 & 1 & 6 \\
2 & 2 & 4,7 \\
3 & & \\
4 & 4 & 2,7 \\
5 & & \\
6 & 6 & 1 \\
7 & 7 & 2,4 \\
\end{array} \]

\[\begin{align*}
\text{in}(s) &= \bigcup_{p \in \text{pred}(s)} \text{out}(p) \\
\text{out}(s) &= \text{gen}(s) \cup (\text{in}(s) \setminus \text{kill}(s))
\end{align*} \]
Reaching Definitions Example

• We get the following equations for this example:

• Solution?

Solution by Iteration

• Initialize all the sets to be empty
• Use the equations and the current values of the sets to compute new values of the sets
 – Repeat until none of the sets change
 – Optimization: Use the new values as soon as they’re available.

• Why does this work?

Application

• Constant propagation optimization
 – Suppose \(d \) is a definition of the form \(a \leftarrow N \) for some constant \(N \).
 – Suppose we have statement that uses \(a \). If \(d \) is the only definition of \(a \) reaching this statement, then the use of \(a \) can be replaced by \(N \).
 – Note: may result in dead code

Application

• Copy propagation elimination
 – Suppose \(d \) is a definition of the form \(a \leftarrow b \) for some variable \(b \).
 – Suppose we have statement that uses \(a \).
 – If \(d \) is the only definition of \(a \) reaching this statement and there is no definition of \(b \) on any path from \(a \) to this use, then the use of \(a \) can be replaced by \(b \).
Observations

• We want analysis to be sound but cannot expect it to be complete
 - That is, analysis must err on the side of caution
 - Depending on the optimization, we must overestimate or underestimate sets
 • Want to overestimate “possibilities”
 • Want to underestimate “guarantees”

Liveness

• Definition
 - A variable is said to be live at a program point if there is path to a use of this variable that does not include an assignment to the variable
 • That is, the control flow graph suggests we may use the current value of this variable later.

• Question:
 - For every program point, determine the variables live variables at that point
 - Answer will be a set of variables for each point.

\[
livein(s) = use(s) \cup (liveout(s) \setminus def(s)) \\
liveout(s) = \bigcup_{pc \in succ(s)} livein(p) \\
liveout(terminal \ node) = \emptyset
\]
Forward vs. Backward Analysis

- A dataflow analysis is said to be a *forward analysis* if the *out* set depends only on the *in* set of this node.
- A dataflow analysis is a *backward analysis* if the *in* set depends only on the *out* set for this node.
- A dataflow analysis is said to be *bidirectional* if neither of these is true.

Liveness Example

```
1. a ← 0       a
2. L1: b ← a+1 b a
3. c ← c+b    c b, c
4. a ← b*2    a b
5. if a<5 goto L1 a
6. return c    c
```

\[
in(s) = use(s) \cup (out(s) \setminus def(s))
\]
\[
out(s) = \bigcup_{p \in succ(s)} in(p)
\]

Liveness Solutions

```
1. a ← 0
2. L1: b ← a+1
3. c ← c+b
4. a ← b*2
5. if a<5 goto L1
6. return c
```

\[
in(s) = use(s) \cup (out(s) \setminus def(s))
\]
\[
out(s) = \bigcup_{p \in succ(s)} in(p)
\]

Application

- Dead code elimination
 - Assume there is a definition of the form \(a \leftarrow e \) where \(e \) has no side-effects.
 - Including overflow exceptions, writes to memory, function calls that might have effects, etc.
 - If \(a \) is not in the live-out set of this instruction, then the definition can be deleted.
Application

- Register allocation
 - Any two distinct variables that are simultaneously live at some point in the program cannot be stored in the same register (or the same stack location)
 - Unless they are guaranteed to have the same value
 - We will come back to this after the break